УДК 519.13

MATEMATUKA

Ф. В. ШИРОКОВ, В. А. СИГНАЕВСКИЙ

МИНИМАЛЬНЫЕ ПОКРЫТИЯ КОНЕЧНОГО МНОЖЕСТВА

(Представлено академиком Л. В. Канторовичем 11 IV 1972)

Понятие минимального покрытия конечного множества возникает во многих комбинаторных задачах, в которых рассматриваются покрытия, обладающие экстремальными в некотором смысле свойствами (1). В данной работе получены разнообразные соотношения для чисел минимальных покрытий конечного множества X, состоящего из n элементов (точек).

Мы называем классом множество, элементами которого служат подмножества X. Множество, элементами которого служат классы, будем называть системой. Класс α подмножеств X называется покрытием X, если каждая точка x из X содержится хотя бы в одном элементе этого класса. Покрытие минимально, если при отбрасывании любого из его элементов оно перестает быть покрытием. Кратностью $\varkappa_{\alpha}(x)$ точки x относительно класса α называется число всех элементов из α , содержащих x.

Пусть $Y \subseteq X$ и пусть α и β — классы подмножеств X и Y соответственно. Назовем класс β следом класса α на Y, если $\beta = \{A \cap Y | A \in \alpha\}$. В произвольном классе α подмножеств X можно определить с номощью

В произвольном классе α подмножеств X можно определить с помощью $Y \subset X$ отношение эквивалентности: $A_1 \sim A_2$ тогда и только тогда, когда $A_1 \cap Y = A_2 \cap Y$. Отбросим класс тех эквивалентных элементов, для которых $A \cap Y = \phi$, а в каждом из оставшихся классов выберем по представителю. Полученный класс обозначим через α . При выводе последующих соотношений используется лемма:

I емма. Для того чтобы класс β —след на Y минимального покрытия а множества X—был минимальным покрытием Y, необходимо и достаточно, чтобы в Y^* попадало не менее чем по одной точке с кратностью $\varkappa_{\alpha^*}(x)=1$ из каждого элемента A класса α^* .

Число всех минимальных покрытий D(n) множества X разлагается в сумму чисел D(n|q), $1 \le q \le n$, где под D(n|q) понимается число всех минимальных покрытий X, состоящих из q подмножеств.

Tеорема 1. Для чисел D(n|q) справедливы следующие рекуррентные уравнения:

$$D(n \mid q) = (2^{q} - q - 1) D(n - 1 \mid q) + \sum_{k=1}^{n-q+1} {n-1 \choose k-1} 2^{(k-1)(q-1)} D(n-k \mid q-1),$$
(1)

$$D(n|q) = (2^{q} - 1) D(n - 1|q) + \sum_{k=1}^{n-q+1} {n-1 \choose k-1} (2^{q-1} - 1)^{(k-1)} D(n-k|q-1),$$
(2)

$$D(n|q) = \frac{1}{q} \sum_{k=1}^{n-q+1} {n \choose k} \left[2^{(q-1)k} - (2^{q-1}-1)^k \right] D(n-k|q-1); \tag{3}$$

два из них независимы, а третье является следствием двух других. T е о p е м а 2. Явное выражение для чисел D(n|q) имеет вид

$$D(n|q) = \frac{1}{q!} \sum_{i=0}^{q} (-1)^{i} {q \choose i} (2^{q} - 1 - i)^{n} = \frac{1}{q!} \Delta^{q} x^{n} \Big|_{x=2^{q} - 1}^{-\infty}, \tag{4}$$

 $e\partial e \ \Delta - paзностный one parop: \Delta f(x) = f(x) - f(x-1).$

Теорема 3. Справедливы соотношения

$$D(n|q) = \sum_{l=q}^{n} {n \choose l} (2^{q} - q - 1)^{n-l} S(l; q),$$
 (5)

$$D(n \mid q) = \sum_{p=q}^{\min(n, 2^{q}-1)} \left\{ \binom{p}{q} \prod_{i=q+1}^{p} (2^{q}-i) \right\} S(n; p), \tag{6}$$

 $e\partial e \; S(l;q) -$ числа Стирлинга второго рода. В формуле (6) значение

 $\prod_{i=q+1}(2^q-i)$ при p=q по определению полагается равным 1.

Замечание. По всякому покрытию α можно построить некоторое разбиение π , пересекая элементы α и их дополнения и беря в качестве атомов π наименьшие непустые такие пересечения. Число V(p,q)=

$$=\binom{p}{q}\prod_{i=q+1}^{r}(2^q-i)$$
 есть число тех минимальных q -элементных покрытий иножества из p точек, у которых атомы разбиения π одноточечные. Соотношения (5) и (6) дают как следствие линейную связь («нематрич-

ного» характера) между числами Стирлинга второго рода. Теорема 4. Экспоненциальная производящая функция $h_q(z)$ для чисел D(n|q) имеет вид

$$h_q(z) = \frac{1}{q!} e^{(2^q - q - 1)z} (e^z - 1)^q.$$
 (7)

Определение. Пусть дан формальный степенной ряд $\sum_{n=0}^{\infty} \frac{a_n}{n!} z^n$.

Функцию $\varphi(z)$ назовем обобщенной производящей функцией для чисел a_n , если она удовлетворяет двум условиям: 1) функция $\varphi(z)$ аналитична в полукруге $\operatorname{Re} z < 0, \ |z| < \rho$ достаточно малого радиуса и непрерывна вместе со всеми своими производными в замкнутом полукруге; 2) фор-

мальный ряд Маклорена $\sum_{n=0}^{\infty} \frac{\varphi^{(n)}(0)}{n!} z^n$, где $\varphi^{(n)}(0)$ вычисляются при дви-

жении к 0 из левой полуплоскости, совпадает с рядом $\sum_{n=0}^{\infty} \frac{a_n}{n!} z^n$.

Элементы A и B произвольного класса α будем называть *сцепленными*, если существует последовательность элементов A_1,\ldots,A_s из α такая, что $A_1=A,\ A_s=B$ и $A_k\cap A_{k+1}\neq \varphi,\ k=1,2,\ldots,s-1$. Введенное отношение является эквивалентностью в α , и α распадается на непересекающиеся классы элементов $\alpha=\gamma_1\cup\gamma_2\cup\ldots\cup\gamma_r-\kappa$ омпоненты связности. При r=1 класс α называется связным.

Обозначим через D(n|q,r) число всех минимальных q-элементных покрытий, имеющих r компонент связности.

Теорема 5. Справедливы следующие рекуррентные соотношения:

$$qD(n|q, r) = \sum_{i=1}^{n} \sum_{j=1}^{q} {n \choose i} jD(i|j, 1) D(n-i|q-j, r-1),$$
 (8)

$$rD(n|q, r) = \sum_{i=1}^{n} \sum_{j=1}^{q} {n \choose i} D(i|j, 1) D(n-i|q-j, r-1).$$
 (9)

 ${f T}$ ворема 6. Функциональный ряд $\sum_{q=1}^\infty h_q(z)$ сходится абсолютно ${m u}$

равномерно в полукруге $\text{Re } z \leq 0, \ |z| \leq \rho, \ \partial \text{остаточно малого радиуса. }$ же сходится и любой из его производных рядов. Сумма h(z) этого ряда служит обобщенной производящей функцией для чисел D(n).

$$h_{q, r}(z) = \sum_{n=0}^{\infty} \frac{D(n \mid q, r)}{n!} z^n, \quad h_{\cdot, r}(z) = \sum_{q=0}^{\infty} h_{q, r}(z).$$

 ${
m Teopema}$ 7. Функция $h_{1,1}(z)$ аналитична в левой полуплоскости ${
m Re}\,z\leqslant 0\,u\,\partial$ ается формулой

$$h_{\bullet, i}(z) = \lg h(z) \tag{10}$$

в полукруге $\mathrm{Re}\ z\leqslant 0,\ |z|\leqslant \varrho,\ \partial$ остаточно малого радиуса. Функция $h_{r,r}(z)$ аналитична в левой полуплоскости $\mathrm{Re}\ z\leqslant 0$ и всюду связана с $h_{r,r}(z)$ формулой

$$h_{\cdot,r}(z) = \frac{1}{r!} [h_{\cdot,1}(z)]^r.$$
 (11)

Функция $h_{r,r}(z)$, $r=1,2,\ldots$ служит обобщенной производящей функцией для чисел $D(n|\cdot,r)$.

Теорема 8. Справедливы следующие соотношения:

$$\frac{D(s)}{s!} = \sum_{1 \cdot k_1 + 2k_2 + \dots + nk_n + \dots = s} \frac{\left[D(1 \mid \cdot, 1)\right]^{k_1} \left[D(2 \mid \cdot, 1)\right]^{k_2} \dots \left[D(n \mid \cdot, 1)\right]^{k_n} \dots}{k_1! \ k_2! \dots k_n! \ (1!)^{k_1} \left(2!\right)^{k_2} \dots \left(n!\right)^{k_n} \dots}, \quad (12)$$

$$\frac{D(s|\cdot,1)}{s!} = \sum_{k=1}^{s} \frac{(-1)^{k-1}}{k} \sum_{n_1+n_2+\dots+n_k=s} \frac{D(n_1)D(n_2)\dots D(n_k)}{n_1! n_2! \dots n_k!}, \quad (13)$$

$$h_s(z) = \sum_{\substack{1 \cdot k_1 + \dots + nk_n + \dots = s}} \frac{[h_{1,1}(z)]^{k_1} \dots [h_{n,1}(z)]^{k_n}}{k_1! \dots k_n! \dots} \dots, \tag{14}$$

$$h_{s,1}(z) = \sum_{k=1}^{s} \frac{(-1)^{k-1}}{k} \sum_{n_1 + \dots + n_k = s} h_{n_1}(z) \dots h_{n_k}(z).$$
 (15)

Tеорема 9 (аналог теоремы 3). Справедливы соотношения

$$D(n|q, 1) = \sum_{l=0}^{n} {n \choose l} \Phi(n-l, q) S(l; q),$$
 (16)

$$D(n|q, 1) = \sum_{p=q}^{n} F(p, q) S(n; p);$$
 (17)

здесь $\Phi(l,q)$ и F(p,q) — целые неотрицательные числа, имеющие простой комбинаторный смысл.

Подобно формулам (5) и (6), формулы (16) и (17) дают линейную связь для чисел Стирлинга второго рода.

Определение. Разбиение $\{Y,Z\}$ множества X разлагает класс β , если любое подмножество $B \subseteq \beta$ входит целиком в Y или в Z.

Обозначим через $\mathfrak{p}(X)$ класс всех подмножеств X, а через $\mathfrak{pp}(X)$ — спстему всех подклассов класса $\mathfrak{p}(X)$. Рассмотрим некоторый «способ выделения» из $\mathfrak{pp}(X)$ подсистемы $\Theta(X)$, удовлетворяющий двум требованиям:

А) Он инвариантен по отношению к перенумерации точек.

Пусть $\{Y,Z\}$ — произвольное разбиение множества X и пусть $\Theta(Y,Z)$ — система всех классов θ из $\Theta(X)$, разлагаемых разбиением $\{Y,Z\}$.

Б) След каждого $\theta \in \Theta(Y, Z)$ на Y принадлежит системе $\Theta(Y)$ и каждый класс из $\Theta(Y)$ является следом некоторого класса из $\Theta(Y, Z)$.

Обозначим через $\Theta_r(X)$, $r=1,2,\ldots$ систему всех классов с r компонентами связности в системе $\Theta(X)$ и положим $P(n)=|\Theta(X)|$ и $P(n|r)=|\Theta_r(X)|$, где символ $|\cdot|$ обозначает число элементов соответствующей системы (|X|=n). По определению, P(0)=P(0,0)=1, P(n,0)=P(0,r)=0 при n,r>0.

Теорема 10. Формальные степенные ряды

$$p\left(z
ight) = \sum_{n=0}^{\infty} rac{P\left(n
ight)}{n!} z^n$$
 if $p_r\left(z
ight) = \sum_{n=0}^{\infty} rac{P\left(n\mid r
ight)}{n!} z^n$, $r=1,2,\ldots$,

связаны между собой равенствами

$$p_r(z) = \frac{1}{r!} [\lg p(z)]^r, \quad r = 1, 2, \dots$$
 (18)

Из теоремы 10 вытекают некоторые результаты статьи (²).

Систему $\Theta(X)$ можно интерпретировать как систему всех минимальных баз топологий на конечном множестве X. Тогда теорема 10 дает связьмежду экспоненциальными производящими функциями для числа всех топологий на конечном множестве и для числа всех «связных» топологий. Имеются и другие интерпретации теоремы 10, связанные с графами и т. п.

Пусть $\rho(\theta)$ — функция класса $\theta \in \Theta(X)$. Мы скажем, что $\rho(\theta)$ мультипликативна, если для любого разбиения $\{Y,Z\}$, разлагающего класс $\theta \in \Theta(X)$, выполняется равенство $\rho(\theta) = \rho(\theta \cap Y) \cdot \rho(\theta \cap Z)$. Положим

$$P\left(n\right) = \sum_{\theta \in \Theta\left(X\right)} \rho\left(\theta\right), \quad P\left(n \mid r\right) = \sum_{\theta \in \Theta_{r}\left(X\right)} \rho\left(\theta\right), \quad |X| = n.$$

Теорема 11. При таком определении чисел P(n) и P(n|r) для соответствующих степенных рядов справедливы соотношения (18).

Числа P(n) и P(n|r) — нечто вроде «интегралов» от мультипликативной функции $\rho(\theta)$ по соответствующим системам.

Московский энергетический институт Поступило 30 III 1972

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

⁴ E. L. Lawler, SIAM J. Appl. Math., **14**, № 5, 1115 (1966). ² A. Rényi, A Magyar tud, Akad. Mat. és fiz. tud. oszt. Közl., **16**, № 1, 77 (1966).