УПК 681.325.5

КИБЕРИЕТИКА И ТЕОРИЯ РЕГУЛИРОВАНИЯ

Академик АН УССР Г. Е. ПУХОВ, В. Ф. ЕВДОКИМОВ

ПРИМЕНЕНИЕ ЦИФРОВЫХ НЕАЛГОРИТМИЧЕСКИХ МАПИН ДЛЯ МОДЕЛИРОВАНИЯ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ

Цифровые неалгоритмические машины (ЦНМ) могут весьма эффективпо применяться для решения разнообразных задач, к числу которых можно отнести системы алгебраических и обыкновенных дифференциальных уравнений, уравнения в частных производных, интегральные уравнения и т. д. В настоящей работе рассмотрено одно из возможных применений ЦНМ для решения систем дифференциальных уравнений, которые в матричной форме имеют вид

$$\frac{dX}{dt} - A(X)X = F. {1}$$

Неалгоритмичность ЦНМ позволяет использовать для решения тех или иных задач хорошо разработанные и успешно применяемые в апалоговой вычислительной технике методы, суть которых сводится к тому, что ре-

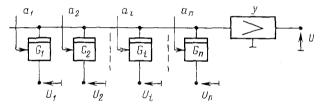


Рис. 1. Устройство для получения суммы парных произведений

шающие элементы, предназначенные для реализации отдельных операций, соединяются между собой в соответствии с видом исходной решающей системы уравнений и решение задачи осуществляется путем их взаимодействия.

Рассмотрим, папример, устройство для получения суммы парных произведений

$$y = a_1 x_1 + a_2 x_2 + \ldots + a_i x_i + \ldots + a_n x_n, \tag{2}$$

блок-схема которого приведена на рис. 1. G_i представляют собой ленточные резистивные матрицы, подробио описанные в (1), коэффициенты их настроены пропорционально соответствующим разрядам чисел a_i , блок Y включает в себя устройства переноса и набор операционных усилителей почислу разрядов переменных решаемой задачи. На входы матриц G_i подаются векторы напряжений U_i , представляющие в машипе соответствующие переменные x_i , при этом на выходе устройства образуется вектор напряжений U, представляющий в машине результат операции (2) y.

Для реализации операции

$$y = \int (a_1 x_1 + a_2 x_2 + \ldots + a_n x_n) dt$$
 (3)

в рассмотренном устройстве резистивные матрицы G_i заменяются емкостными с ключами (1), при этом осуществляется интегрирование суммы парных произведений по времени. В случае, если в выражении (2) или (3)

коэффициенты a_i являются некоторыми функциями переменных,

$$a_i = f(x_i),$$

соответствующие матрицы G_i делаются управляемыми векторами напряжений U_i , представляющих в машине x_i .

На рис. $\hat{2}$ приведена схема устройства для решения системы трех уравнений вида (1), построенная по типу матричной аналоговой модели, предназначенной для решения тех же уравнений. Здесь G_{ij} представляет собой емкостные матрицы с ключами, блоки Y_i , как и в схеме рис. 1, включают в себя устройства переноса и набор операционных усилителей по числу разрядов переменных x_i . Набор ключей K_{ij} замыкается в положении 1 либо 2 в зависимости от знака a_{ij} , а коэффициенты матриц G_{ij} построены про-

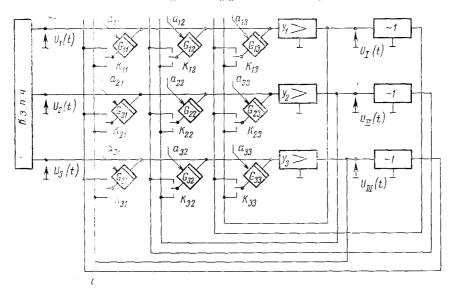


Рис. 2. Устройство для решения систем дифференциальных уравнений

порционально соответствующим разрядам произведения $\Delta t a_{ij}$ (Δt — такт работы машины), подобно тому как это делалось при построении интеграторов (1). Из блока задания правых частей (б.з.п.ч.) на вход устройства поступают векторы напряжений $U_1(t)$, $U_2(t)$, $U_3(t)$, представляющие в машине соответствующие компоненты вектора правых частей системы уравнений (1) на каждом шаге дискретизации по времени 1 0; при этом на выходе устройства образуются векторы напряжений 1 1, 1 2, 1 3, 1 4, представляющие в машине компоненты вектора неизвестных 1 3.

Если какой-либо из коэффициентов a_{ij} матрицы A зависит от компонент x_i вектора неизвестных X, то состветствующая матрица емкостей G_{ij} делается управляемой, т. с. такой, что ее коэффициенты зависят от вектора напряжений U_1 , представляющего в машине x_i . Если в каком-либо из уравнений системы (1) отсутствует производная переменной по времени, т. с. система включает в себя алгебраическое уравнение, то в соответствующей i-й строке рассматриваемого устройства емкостиые матрицы G_{ij} заменяются резистивными, при этом в данной строке реализуется операция (2). Отметим также, что предлагаемое устройство может применяться для решения и некоторых систем алгебраических уравнений вида

$$A(X)X = F$$

в этом случае все матрицы G_{ij} должны быть резистивными.

Рассмотренный способ решения дифферепциальных уравнений посредством ЦНМ является достаточно общим, так как к виду (1) приводятся

любые системы дифференциальных уравнений и отдельные уравнения высокого порядка, однако иногда, в частности при моделировании систем автоматического регулирования и управления, возникает необходимость в так называемой структурной реализации систем дифференциальных уравнений. В этом случае необходимо иметь набор решающих элементов ЦНМ, реализующих отдельные операции, и соединять их между собой в соответствии с структурой моделирующей системы. В работе (1) показаны принципы построения таких решающих элементов.

Процесс подготовки задач к решению на ЦНМ осуществляется подобнотому, как это делается в аналоговой вычислительной технике, т. е. по максимальным значениям переменных решаемой задачи рассчитываются масштабные коэффициенты, по котором определяются значения машинных коэффициентов, устанавливаемых затем в машине. Установка машинных коэффициентов осуществляется либо вручную, либо автоматически, причем каждая из проводимостей матрицы G_{ij} может принимать только целые значения, меньшие основания системы счисления, в которой работает машина, что существенно упрощает процесс установки коэффициентов и его автоматизацию по сравнению с тем, как это делается в ABM.

Применение рассмотренных ЦНМ для решения дифференциальных уравнений существенно расширяет частотный диапазон получаемых результатов по сравнению с существующими ЦВМ и увеличивает точность по сравнению с АВМ.

Институт электродипамики Академии паук УССР Киев Поступило 27 VII 1971

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ Г. Е. Пухов, В. Ф. Евдокимов, ДАН, 208, № 2 (1973).