ФИЗИЧЕСКАЯ ХИМИЯ

Член-корреспондент АН СССР В. Н. ЦВЕТКОВ, Е. И. РЮМЦЕВ, И. П. КОЛОМИЕЦ, А. П. КОВШИК

ДИЭЛЕКТРИЧЕСКИЕ СВОИСТВА И АНИЗОТРОПИЯ МОЛЕКУЛЯРНОГО ВРАЩЕНИЯ В НЕМАТИЧЕСКОМ АНИЗАЛАМИНОАЗОБЕНЗОЛЕ

В недавно опубликованной работе (¹) методом одновременного наложения электрического и магнитного полей было изучено ориентирующее действие электрического поля на нематический жидкий кристалл анизаламиноазобензола (ААБ), обладающего положительной диэлектрической анизотропией. Применяемый в (¹) метод позволил определить температурную зависимость отношения $\Delta \sigma / \Delta \chi$, где $\Delta \chi = \chi_{\parallel} - \chi_{\perp}$ и $\Delta \sigma = \sigma_{\parallel} - \sigma_{\perp} - \rho$ азности между главными значениями магнитной и электрической восприимчивостей нематического вещества в направлениях па-

раллельном и перпендикулярном оси нематического порядка.

5,0 -50 -40 -30 -20 -10 0 °C

Рис. 1. Зависимость значений диэлектрической проницаемости ε_{\parallel} (I), ε_{\perp} (2) и ε_{is} (3) и диэлектрической анизотропии $\Delta\varepsilon$ (4) ААБ от разности $\Delta t = t - t_0$ относительно температуры t_0 перехода в изотропную фазу

Оказалось, что как для ААБ, обладающего положительной диэлектрической анизотропией, так и для п-азоксианизола с отрицательной диэлектрической анизотропией отношение $\Delta\sigma/\Delta\chi$ возрастает с повышением температуры. Поскольку диамагнитная анизотропия нематического жидкого кристалла изменяется пропорционально степени ориентационного порядка $S(^2)$, из экспериментальных данных (1) следует, что для нематических жидкостей как с отрицательной, так и с положительной диэлектрической анизотропией изменение Δδ с температурой не соответствует измене-Указанные диэлектрические свойства мезоморфных жидкостей были объяснены теорией (³), учитывающей анизотропию заторможенности молекулярного вращения в нематических жилких кристаллах.

В настоящей работе на радиочастоте $v = 7 \cdot 10^5$ гц были измерены абсолютные значения главных диэлектрических проницаемостей ε_{\parallel} и ε_{\perp} в нематической фазе AAБ (температурный интервал 151—178° C), а также диэлектрическая проницаемость вещества ε_{is} в аморфно жидком состоянии. Абсолютные значения ε_{\parallel} , ε_{\perp} и ε_{is} , с применением теории (3), используются для характеристики заторможенности молекулярного вращения в нематической фазе AAБ. При измерениях диэлектрической проницаемости нематическое вещество помещалось в плоский конденсатор из титана и однородно ориентировалось постоянным магнитным полем напряженностью $5 \cdot 10^3$ г. Направление магнитного поля было перпендикулярно (для нахождения ε_{\parallel}) или параллельно (для нахождения ε_{\perp}) обкладкам конденсатора. Емкость конденсатора (равная для пустого конкладкам конденсатора.

денсатора 15 пф) измерялась методом биений с использованием стандартного прибора ИИЕВ-1, работающего на частоте $7 \cdot 10^5$ гц.

На рис. 1 представлены полученные для ААБ результаты в виде зависимости ε_{\parallel} , ε_{\perp} , ε_{is} и $\Delta\varepsilon$ от температуры (кривые 1, 2, 3, 4). Из приведенных кривых видно, что для нематической фазы на использованной радиочастоте характерна большая положительная диэлектрическая анизотропия, монотонно убывающая с повышением температуры и скачкообразно исчезающая при температуре превращения вещества в аморфно-жидкую фазу (178°).

Следует отметить, что полученное нами для ААБ значение $\Delta\epsilon$ (на частоте $7\cdot 10^5$ гц) вдвое превышает величину, найденную в работе (*) диэлектрическим методом на частотах $6\cdot 10^9$ и $2.4\cdot 10^{10}$ гц. Это обстоятельство указывает на дисперсию диэлектрических свойств анизотропно жидкого

Таблица 1

Диэлектрические характеристики, степень нематического порядка S и параметры заторможенности молекулярного вращения x_1 и x_2 ААБ при различных температурах

Δt, °C	ε∥	٤١	ΔR , cm ³	(PQ)	(<i>PQ</i>)⊥	s	x ₁	x_2
$ \begin{array}{r} -1 \\ -5 \\ -10 \\ -15 \\ -20 \\ -30 \end{array} $	5,22 5,44 5,60 5,70 5,80 5,96	4,44 4,40 4,40 4,41 4,43 4,46	32 40 46 50 52 55	2,08 2,15 2,20 2,24 2,27 2,32	1,78 1,77 1,77 1,76 1,76 1,76	0,44 $0,54$ $0,62$ $0,66$ $0,70$ $0,74$	$\begin{array}{c} -0.70 \\ -0.73 \\ -0.75 \\ -0.76 \\ -0.77 \\ -0.79 \end{array}$	0,64 0,65 0,71 0,72 0,75 0,71

ААБ в области радиочастот, аналогичную обнаруженной ранее для нематических жидких кристаллов с отрицательной диэлектрической анизотропией ($^{5-7}$). Возможно, что обнаруженная здесь дисперсия является следствием анизотропии заторможенности молекулярного вращения в нематической фазе ААБ, аналогично отрицательно анизотропным мезофазам (8).

Как уже указывалось, используя найденные абсолютные значения ε_{lh} ε_⊥ и ε_{is}, можно получить сведения о заторможенности вращательного движения молекул нематического ААБ. Для этого следует воспользоваться выражениями для главных молярных диэлектрических восприимчивостей

 $\sigma_{\parallel}=(\varepsilon_{\parallel}-1)M/4\pi\rho,\,\sigma_{\perp}=(\varepsilon_{\perp}-1)M/4\pi\rho$ и $\sigma_{is}=(\varepsilon_{is}-1)M/4\pi\rho$ нематической мезофазы, полученными в работе (3):

$$\sigma_{\parallel}/P_{\parallel}Q_{\parallel}N_{A} = \overline{\alpha} + \frac{2}{3}\Delta\alpha S + Q_{\parallel} \frac{\mu^{2}}{3kT}(1-S) + \\
+ Q_{\parallel} \frac{\mu^{2}\cos^{2}\beta}{kT}S\left(1 + \frac{1+2S}{3S}x_{1}\right) + Q_{\parallel} \frac{\mu^{2}}{3kT}\sin^{2}\beta(1-S)x_{2}, \qquad (1) \\
\sigma_{\perp}/P_{\perp}Q_{\perp}N_{A} = \overline{\alpha} - \frac{1}{3}\Delta\alpha S + Q_{\perp} \frac{\mu^{2}}{3kT}(1-S) + \\
+ Q_{\perp} \frac{\mu^{2}\sin^{2}\beta}{2kT}S\left(1 + \frac{S+2}{3S}x_{2}\right). \qquad (2)$$

Здесь $\Delta \alpha = \alpha_1 - \alpha_2$ разность двух главных деформационных поляризуемостей молекулы в области радиочастот, μ — ее дипольный момент, наклоненный под углом β к оси ее наибольшей поляризуемости α_1 , P и Q множители внутреннего поля по Онзагеру ($P=3\epsilon/2\epsilon+1$, $Q=(\epsilon_\infty+2)(2\epsilon+1)/3\epsilon(2\epsilon+\epsilon_\infty)$). S — степень ориентационной упорядоченности мезофазы (2); x_1 , x_2 — параметры, характеризующие заторможенность вращения молекулы соответственно вокруг ее короткой и длинной геометрических осей при равновесной диэлектрической поляризации вещества.

Значения x_1 и x_2 могут быть определены из системы уравнений (1) и (2), если известны все другие входящие в эти уравнения величины. Величина дипольного момента ААБ $\mu=2.58\cdot 10^{-18}$ ед. CGS определена из диэлектрических измерений в бензольных растворах (9). Степень ориентационного порядка и ее температурная зависимость в нематическом ААБ определена из измерений диамагнитной анизотропии вещества (2 , 10). Полученные данные приведены в табл. 1. Использованные при вычислениях значения плотности ρ при различных температурах, заимствованы из работы (11).

Для оценки величины $\Delta \alpha$ можно положить $\Delta \alpha / \Delta b = \bar{\alpha} / \bar{b}$, где среднее значение деформационной поляризуемости $\bar{\alpha}$ молекулы AAB получено из

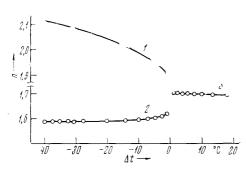


Рис. 2. Температурная зависимость показателей преломления в нематической n_c (I) и n_0 (2) и изотропной n_{is} (3) фазах

диэлектрических измерений на частоте $v = 2.4 \cdot 10^{10}$ и равно $\bar{\alpha} =$ $= 506 \cdot 10^{-25}$ см³ (4). Средняя оптическая поляризуемость молекулы \bar{b} была определена из рефрактометрических измерений и оказалась равной $\bar{b} = 4\bar{6}0 \cdot 10^{-25}$ см³. Оптическая анизотропия молекулы Δb вычислена из определенной нами анизотропии молярной рефракции в нематической фазе при $\lambda = 5460 \, \text{Å}$ с учетом степени упорядоченности S вещества. Данные рефрактометрических измерений представлены на рис. 2, значения анизотропии молярной рефракции ΔR приведены в табл. 1. Значение

 Δb оказалось равным $300\cdot 10^{-25}$ см³, что с учетом сказанного выше дает $\Delta \alpha = 330\cdot 10^{-25}$ см³. При вычислении значений Q_{\parallel} и Q_{\perp} принимали $(\epsilon_{\infty})_{\parallel} = n_{\rm e}^{\,2}$ и $(\epsilon_{\infty})_{\perp} = n_{\rm e}^{\,2}$.

Угол β определяется из данных по исследованию эффекта Керра в бензольных растворах ААБ (°). Используя экспериментальные данные работы (°) и приведенные выше значения $\Delta \alpha$ и Δb , получаем $\cos^2 \beta = 0,609$; $\beta = 39^\circ$. Подстановка всех перечисленных величин в уравнениях (1) и (2) приводит к значениям параметров x_1 и x_2 , представленных в табл. 1.

Во всем температурном интервале существования нематической фазы AAB, параметр x_1 отрицателен, тогда как x_2 положителен. Это означает, что при равновесной дипольной поляризации вещества в анизотропно жидкой фазе вращение молекул AAB вокруг короткой оси заторможено больше, а вращение вокруг длинной оси заторможено меньше, чем в изотропной фазе AAB. Этот результат вполне соответствует выводам, которые были сделаны ранее в отношении n-азоксианизола (3) — нематической жидкости с отрицательной диэлектрической анизотропией. Таким образом, анизотропия заторможенности молекулярного вращения в нематической мезофазе имеет один и тот же знак пезависимо от знака диэлектрической анизотропии вещества при его дипольной поляризации.

Характерпо, что x_1 , как и в случае n-азоксианизола, слабо меняется с температурой в исследованном температурном интервале. Очевидно, в этом проявляется основное свойство, общее для всех нематических мезоморфных веществ — сохранение ориентационного порядка в расположении продольных молекулярных осей. Величина x_1 для AAБ несколько превосходит значения, полученные для азоксианизола (3), что, по-видимому, является следствием большей геометрической асимметрии молекулы AAБ по сравнению с молекулой n-азоксианизола.

Обращает на себя внимание, что величина параметра x_2 для AAБ значительно больше, чем для азоксианизола ($^{\circ}$). Этот факт, по-видимому, может быть объяснен тем, что ось диполя в молекуле AAБ отклонена от про-

дольной оси мелекулы на угол (39°) , значительно меньший, чем в молекуле n-азоксианизола (60°) . Действительно, уменьшение этого угла должно приводить к ослаблению диполь-дипольных взаимодействий при вращении молекул вокруг продольных осей и, следовательно, к уменьшению

заторможенности этого вращения.

Таким образом, теория (3), учитывающая анизотропию заторможенности молекулярного вращения в нематической мезофазе, дает количественное объяснение диэлектрических свойств жидких кристаллов как с отрицательной, так и с положительной диэлектрической анизотропией. Легко видеть, что теория, не учитывающая этого факта (12), не соответствует экспериментальным данным, поскольку ее уравнения получаются из (1) и (2) подстановкой в них значений $x_1 = x_2 = 0$.

Ленинградский государственный университет им. А. А. Жданова

Поступило 5 VII 1971

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ В. Н. Цветков, Е. И. Рюмцев, И. П. Коломиел, ДАН, 189, 1310 (1969).
² V. N. Zwetkoff, Acta Physicochimica URSS, 16, 132 (1942).
³ В. Н. Цветков, Вестн. Ленингр. унив., № 4, 26 (1970); Кристаллография, 14, 686 (1969).
⁴ Е. F. Сагг, J. Chem. Phys., 42, 738 (1965).
⁵ W. Maier, G. Meier, Zs. Naturforsch., 16a, 1200 (1961).
⁶ Е. F. Сагг, J. Chem. Phys., 37, 104 (1962).
⁷ A. Axmann, Zs. Naturforsch., 21a, 290, 615 (1966).
⁸ A. Saupe, G. Meier, Liquid Crystals. N. Y.— London — Paris, 1967, p. 195.
⁹ В. Н. Цветков, В. А. Маринин, ЖЭТФ, 18, 641 (1948).
¹⁰ В. Н. Цветков, А. Сосновский, ЖЭТФ, 13, 353 (1943).
¹¹ R. S. Porter, J. F. Johnson, J. Appl. Phys., 34, 51 (1963).
¹² W. Maier, G. Meier, Zs. Naturforsch., 16a, 470 (1961).