В. А. ШАРПАТЫЙ, М. Н. СУЛТАНХОДЖАЕВА, А. С. РАХМАНОВ

ОБ ОБРАЗОВАНИИ РАДИКАЛОВ «ТИМИНОВОЙ СТРУКТУРЫ» ПРИ РАДИОЛИЗЕ ЗАМОРОЖЕННЫХ ЩЕЛОЧНЫХ РАСТВОРОВ ТИМИНА

(Представлено академиком Н. М. Эмануэлем 22 IV. 1971)

При низкотемпературном радиолизе водных растворов нативных преиаратов (1 , 2), а также щелочных и кислых растворов ДНК (3) образуются радикалы из биополимера, характеризующиеся линией э.п.р. со слабо выраженной дублетной структурой R_{π} . После разогревания образца до $\sim 173^{\circ}$ К или облучения его у.-ф. светом вместо R_{π} регистрируется

Рис. 1. Спектры э.п.р. облученных растворов 10 M КОН (I), тимина, (0.03~M), пунктир — 0.01~M) в 10 M КОН (II и III), записанные при разных уровнях мощности с.в.ч.: $(a-P_{\min}, 6-P_{\max}, s-P_{\min})$, после облучения видимым светом $(I, II: P_{\max}-P_{\min})=20~\text{дб}); I$ и II-до термоотжига, доза = 1,5 Мрад, III— после термоотжига радикалов в течение 30 мпн (a), 70 мин (b), 100 мин (b) при 158° K, P_{\min} , доза 13 Мрад

линия радикала тиминовой структуры (ТН). При этом концентрация ТН в нативных препаратах составляет от [R_д] в щелочных матрицах — 10% [R_д]. Для того чтобы выяснить механизм образования радикалов ТН в растворах ДНК, методом э.п.р. изучали радиолиз тимина в стеклованном щелочном (10 M KOH) растворе при 77° К. Облученные образцы освещались видимым светом (отбеливание ест) и размораживались. Результаты опытов представлены на рис. 1 и в табл. 1.

облученных дозой 1,5 Мрад и затем «отбеленных» растворах регистрируется спектр с дублетной с.т.с. и $\Delta H_{\rm max} \sim 23$ гС (в растворах других пиримидинов или пиримидин — нуклеозидов также дублетная с.т.с., в растворах пуринов -- узкие синглетные линии э.п.р., табл. 2). В образцах, облученных дозами более 7—13 Мрад, наряду с дублетным сигналом, регистрируется 8-компонентная линия ТН. Из сопоставления спектров э.п.р. и данных табл. 1 можно заключить,

во-первых, что окислительная компонента, регистрируемая в щелочной матрице как O^- , в образовании радикалов из тимина при 77° K участия не принимает и, во-вторых, что молекула тимина в процессе облучения

Таблица 1 Концентрация радикалов (г $^{-1}$) в облучавшихся при 77° К щелочных (10 M КОН) растворах тимина $^{\bullet}$

Конц. тимина, М	В отбеленн	ых образцах			
	[T-]·10-17	[ΣR]·10-17	до отбел. е _{ст} ×10-17	носле отбел. е _{ст} ×10-17	[ТН] после тер- моотжига×10-17
0 (1,5) 0 (13) 0,04 (1,5) 0,03 (1,5) 0,03 ** (13)	$\begin{array}{ c c c }\hline 0 \\ 0 \\ 1 \pm 0.4 \\ 2.6 \pm 0.4 \\ 2.7 \pm 0.4 \\ \hline \end{array}$	$\begin{bmatrix} - \\ 3,2\pm0,4 \\ 6,7\pm0,7 \\ 29\pm3 \end{bmatrix}$	$\begin{array}{c} 11 \pm 1 \\ 27 \pm 5 \\ 9,7 \pm 1 \\ 12 \pm 2 \\ 27 \pm 5 \end{array}$	$\begin{array}{c c} 3,6 \pm 0,4 \\ 25 \pm 4 \\ 7,0 \pm 0,7 \\ 5,1 \pm 0,6 \\ 25 \pm 5 \end{array}$	$ \begin{vmatrix} 0 & 0 \\ 0,34 \pm 0,14 & (20) \\ 3,3 \pm 0,4 & (115) \\ 3,5 \pm 0,2 & (70) \end{vmatrix} $

^{*} В снобках в первой комонке — доза (Мрад), в последней колонке — время (минуты) выдерживания образца при 158° К; концентрация [O-] определялась по коэффициенту формы. ** [TH] в образцах до и после отбеливания е $_{\rm CT}$ равна (2,5 \pm 1,2)-1016.

захватывает е и образует радикал T^- (также и остальные азотистые основания) с дублетной с.т.с. Радикалы T^- при размораживании образца полностью переходят в T^+ . Появление T^+ при T^0 в зависимости от поглощаемой дозы коррелирует с кинетикой образования стабилизированных в щелочной матрице H (4). Радикалы T^+ в этих условиях радиолиза образуются за счет обсуждавшегося в (4) эффекта перекрывания треков — участия в реакциях H_2O^+ или H_2O^* . Под действием света $\lambda \geqslant 300$ м μ T^- превращается в T^+ .

Таблица 2 Характеристики анион-радикалов, регистрируемых при низкотемпературном радиолизе азотистых оснований и нуклеозидов в растворах 10M КОН; дозы 4, 5 и 13 Мрад (отмечены соответственно знаками + и \times)

Соединение	Число к ом- понентов с.т.с.	g-∯arrop * (±2.10-•)	$\Delta H_{ m max}$ (rc)	Темпера- турная область регистра- ции, °К	Соединение	Число ком- понентов с.т.с.	g-фактор * (±2·10-4)	$\Delta H_{ ext{max}}$	Темпера- турная область регистра- ции, °К
Тимин [×] 0,03 <i>М</i>	2	2,0034	23 <u>±</u> 0,2	до 160	Уридин ⁺ 0.03 <i>М</i>	2	2,0020	23	до 175
Урацил×	2	2,0034	23	до 17 5	Аденин×	1	2,0027	19	до 152
0,03 <i>М</i> 2-Дезокси- цитидин [×] 0,03 <i>М</i>	2	2,0032	26	до 175	0,02 <i>М</i> Гуанин ⁺ 0,02 <i>М</i>	1	2, 004 0	14	до 147

^{*}Подразумевается положение линии писителено пинии ДФПГ, измердемый g-фантор кото рой равен 2,0034 \pm 0,0002; для отредълвия g-фантор полододили измерения напряженности мат-интигого поля спектромятря «ЭП2-2ИХФ» из праборе «ИМA-2», а с.в.ч. резонатора — при помощи гетеро цинного волномера «44-И» (f 9254,5 Mrц).

Чтобы получить дополнительные подтверждения участия заряженных частиц в образовании и превращения радикалов ТН, изучалась радиотермолюминесценция этих систем. Методика изложена в (5 , 6). При разогревании облученного $10\,M$ КОН регистрируются две полосы свечения: широкая, начиная со 100° К с $T_{\rm max}^0 \sim 112,5^\circ$, и узкая, начиная с 158° с $T_{\rm max}^{} \sim 167^\circ$. В первой области температур (согласно данным э.п.р.) наблюдается исчезновение Н, концентрация $e_{\rm cr}$, O^- , T^- практически неменяется; во второй области температур исчезают $e_{\rm cr}$ и O^- , T^- превращается в ТН. Если предположить, что в изучавшейся системе (подобно облучаемым органическим соединениям) свечение при низких температурах — результат рекомбинации зарядов противоположного знака, кото-

рые высвобождаются при разогревании образца из ловушек, вследствие структурных изменений системы, то, можно заключить, что в низкотемпературной области становится возможной рекомбинация сравнительно небольшой части зарядов (порядка $2\cdot 10^{16}$ на 1 г согласно (4)) — протонов и электронов, стабилизированных вблизи H^+ ($e+H^+=H$, $H+H_{cr}=H_2$), а также протонов и T^- . Соответственно, люминесценция в высокотемпературной области — результат появления подвижности у остальных заряженных частиц, образующихся при радиолизе, возникающей вследствие дальнейших структурных изменений в системе. Радикалы T^+ , очевидно, образуются при этом в результате взаимодействия T^- с ближайшими молекулами воды, обретающими в этих условиях подвижность: $T^-+H_2O=TH+OH^-$.

Полученные данные позволили сделать следующие выводы: 1) при радиолизе растворов ДНК все азотистые основания захватывают электроны; 2) в случае радиолиза соединений, существующих в водных растворах в ионной форме (одним из таких соединений и является, в частности, ДНК) в концентрированных растворах необходимо считаться с возможностью дополнительного вовлечения в реакции возбужденных молекул воды или непосредственно H_2O^+ .

Авторы благодарны А. И. Приступе за помощь в определении g-факторов парамагнитных частиц, акад. Н. М. Эмануэлю — за обсуждение результатов работы.

Институт химической физики Академии наук СССР Москва Поступило 19 IV 1971

ПИТИРОВАННАЯ ЛИТЕРАТУРА

¹ В. А. Шарпатый, М. Т. Наджимиддинова и др., ДАН, 180, 412 (1968). ² А. Р. Lenherr, М. G. Ormerod, Biochim. et biophys. acta, 166, № 2, 298 (1968). ³ В. А. Шарпатый, А. И. Приступа и др., Изв. АН СССР, сер. хим., 1970, 709. ⁴ А. И. Приступа, И. Н. Прихидько, В. А. Шарпатый, Изв. АН СССР, сер. хим., 1970, 488. ⁵ В. Г. Никольский, Н. Я. Бубен, ДАН, 134, 134 (1960). ⁶ В. А. Шарпатый, М. Т. Наджимиддинова и др., Хим. высоких энергий, 3, 469 (1969).