Доклады Академии наук СССР 1972. Том 207, № 5

УДК 539.21

ТЕХНИЧЕСКАЯ ФИЗИКА

В. М. ХЛЕСТОВ, Р. И. ЭНТИН, Г. Я. БЕТИН, Е. В. КОНОПЛЕВА, Я. Б. ГУРЕВИЧ

ПОВЫШЕНИЕ БЕЙНИТНОЙ ПРОКАЛИВАЕМОСТИ СТАЛИ ПРИ ТЕРМОМЕХАНИЧЕСКОЙ ОБРАБОТКЕ

(Представлено академиком Г. В. Курдюмовым 23 III 1972)

В работе (1) показано, что деформация аустенита в интервале температур 800—850° С приводит при охлаждении к ускорению перлитного превращения и, что особенно существенно, торможению промежуточного (бейнитного) превращения. Из этого вытекало, что одним из следствий термомеханической обработки (т.м.о.) с деформацией аустенита в определенном интервале температур (для ряда легированных сталей выше 700°) должно быть повышение бейнитной прокаливаемости и улучшение комплекса свойств стали.

Для экспериментальной проверки этого вывода нами была выбрана сталь марки 40XHMA следующего химического состава (вес. %): C = 0.43; Mn = 0.78; Cr = 0.87; Cr = 0.87

Для определения целесообразных вариантов обработки заготовок стали на анизометре со специальной конструкцией головки (2) изучали кинетику превращений деформированного и недеформированного аустенита в изотермических условиях и при непрерывном охлаждении. При этом варьировали температуру и степень деформации, а также скорость охлаждения после деформации.

Было установлено, что максимальное торможение промежуточного превращения аустенита при температуре минимума его устойчивости (400°) оказывает деформация на 10% при 800°. Влияние указанной деформации на диаграмму изотермического превращения аустенита показано на рис. 1. Из рисунка видно, что прокаливаемость стали 40ХНМА как после деформации, так и без деформации будет определяться, в первую очередь, устойчивостью аустенита в промежуточной области превращения.

Замедляющее действие деформации при 800° на кинетику промежуточного превращения более контрастно проявляется при непрерывном охлаждении. Из рис. 2 видно, что в деформированном аустените превращение начинается при более низкой температуре и идет с меньшей скоростью, чем в недеформированном. Так, деформация на 10% снижает температуру начала превращения на 50° и уменьшает степень превращения при охлаждении до 300° в 4 раза.

Изучение микроструктуры подтвердило результаты магнитометрических измерений: в деформированных образцах после охлаждения было

значительно меньше бейнита, чем в недеформированных.

Для определения влияния деформации на механические свойства стали 40XHMA заготовки сечением 12×12 мм нагревали до 950° , выдерживали 5 мин., подстуживали с печью до 800° , а затем обрабатывали по 6 вариантам, приведенным в табл. 1.

Два варианта охлаждения были приняты с целью раздельно выявить непосредственно эффект т.м.о. (закалка в масле на мартенсит, варианты 3 и 4) и влияние деформации на механические свойства стали, обуслов-

ленное изменением кинстики промежуточного превращения аустенита (охлаждение на воздухе в кварцевой трубке). Охлаждение заготовок в вариантах 1, 2 и 5, 6, как показали специальные опыты, происходило с такой же скоростью, с какой охлаждается центр цилиндра диаметром 25 мм на воздухе и диаметром 450 мм в масле.

Деформацию заготовок осуществляли прокаткой за один проход на лабораторном стане. Скорость прокатки была достаточно высокой (0,5 м/сек), что практически полностью исключало охлаждение заготовок при деформации.

Степень деформации и условия охлаждения заготовок в вариантах 1 и 5 подбирались с учетом результатов магнитометрических измерений.

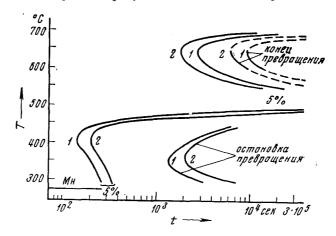


Рис. 1. Влияние деформации при 800° на диаграмму изотермического превращения аустенита стали $40\mathrm{XHMA}$. Нагрев 950° в течение 5 мин., подстуживание с печью до 800° ; I — без деформации, 2 — деформации 10%

Охлаждение деформированных и недеформированных заготовок в кварцевой трубке проходило с такой же скоростью, с какой охлаждались образцы при изучении кинетики превращения аустенита при непрерывном охлаждении (рис. 2).

Деформация на 10% при 800°, как видно из табл. 1, оказывает незначительное влияние на прочность и пластичность стали 40ХНМА в высокоотпущенном состоянии. Эффект т.м.о. почти не проявляется (варианты

. Tаблица 1 Влияние деформации при 800° С на механические свойства * стали 40ХНМА

	Степень деформа- ции, %	Среда охлажде- ния от 800° С	Т-ра отпуска, °С	Механические свойства при растяжении круглых образцов диаметром 6 мм			
				^σ Т Мн/м² (кг/мм²)	σ _В Мн/м² (кг /мм²)	δ ₅ , %	ψ, %
1 2 3 4 5 6	10 0 10 0 10 0	Воздух ** Воздух Масло Масло Воздух Воздух	640 640 640 640 200 200	778 (80,5) 725 (74,0) 866 (88,5) 836 (85,5) 1705 (174,0) 1390 (142,0)	930 (95) 915 (93,5) 990 (101,0) 980 (100,0) 1861 (190) 1549 (158)	19,0 18,7 17,0 20,0 9,2 10,0	64 67 64 64 43 46

^{*} Приведены средние значения результатов испытания 3 образцов. ** Охлаждение заготовок в вариантах 1, 2 и 5, 6 производилось на воздухе в кварцевой трубке диаметром 30 мм.

3 и 4), а деформация с последующим замедленным охлаждением приводит к существенному (на 9%) повышению предела текучести и практически не влияет на характеристики пластичности стали при растяжении (δ_5 и ψ , варианты 1 и 2).

В низкоотпущенной стали действие предварительной деформации значительно: временное сопротивление и предел текучести увеличиваются на 20-22% при очень небольшом снижении пластичности (варианты 5 и 6). Очевидно, повышение прочности в рассматриваемом случае в основном определяется увеличением доли мартенсита в структуре деформированных образдов, так как т.м.о. с деформацией аустенита при 800 даже на 30% обычно не приводит к повышению предела текучести и временного сопротивления более чем на 10-15% (3).

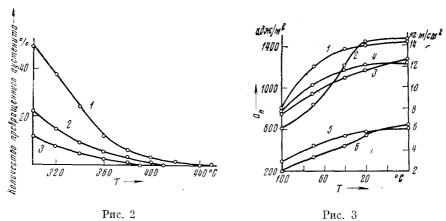


Рис. 2. Влияние деформации при 800° на кинетику промежуточного превращения аустенита стали $40\mathrm{XHMA}$ при непрерывном охлаждении. Нагрев 950° в течение 5 мин., подстуживание с печью до 800° , охлаждение от 800 до 300° в держателе анизометра за 12 мин. 1 — без деформации, 2 — деформация 20%; 3 — деформация 10%

Рис. 3. Влияние температуры испытания и обработки на ударную вязкость стали $40\mathrm{XHMA}$. I-6 варианты обработки, приведенные в табл. 1

На рис. З показана зависимость ударной вязкости стали 40ХНМА от температуры испытания. Сопоставление кривых четко показывает преимущество обработки стали по варианту 1 в сравнении с вариантом 2: верхний порог хладноломкости вследствие значительно меньшей доли бейнита в структуре деформированных образцов снижается примерно на 30°. Непосредственно действие эффекта т.м.о. на склонность стали к хрушкому разрушению в данном случае не проявляется (кривые 3 и 4).

Снижение склонности высокоотпущенной стали к хрупкому разрушению под влиянием замедляющего действия деформации на кинетику промежуточного превращения прослеживается также по виду изломов ударных образцов. В случае обработки заготовок по варианту 2 (без деформации) в изломе образцов, испытапных при минус 40°, было примерно 20% кристаллической составляющей, тогда как при обработке по варианту 1 первые кристаллические участки в изломе появлялись при —70°.

Снижение доли бейнита в структуре благоприятно влияет также на свойства стали в низкоотпущенном состоянии: при отрицательных температурах вязкость деформированных образцов несколько выше, чем недеформированных (кривые 5 и 6 на рис. 3).

Приведенные экспериментальные данные позволяют заключить, что термомеханическая обработка может быть применена для повышения прокаливаемости некоторых марок стали, имеющих более низкую устойчивость аустенита в промежуточной области, чем в перлитной. В низкоотпущенном состоянии это приведет главным образом к значительному

повышению характеристик прочности стали (σ_T, σ_B) , а в высокоотнущенном — к повышению предела текучести и существенному снижению порога хладноломкости и склонности к хрупкому разрушению.

Условия деформации аустенита (температура, степень, дробность), приводящие к подобному эффекту, зависят от состава стали и в каждом конкретном случае необходимо их экспериментальное определение.

Ждановский металлургический институт Институт металловедения и физики металлов

Поступило 20 III 1972

Центрального научно-исследовательского института черной металлургии им. И. П. Бардина Москва

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ В. М. Хлестов, Р. И. Энтин и др., Физ. мет. и металловед. **33**, № 4 (1972). ² В. М. Хлестов, Б. А. Леоптьев, Г. Я. Бетин, Авт. свид. № 276479, Бюли. изобр., № 23 (1970). ³ М. Л. Берн штейн, Термомеханическая обработка стали, М. 1968.