ФИЗИЧЕСКАЯ ХИМИЯ

Академик АН УССР К. Б. ЯЦИМИРСКИЙ, Б. Г. ЖЕЛЯЗКОВА

КИНЕТИКА И МЕХАНИЗМ РЕАКЦИИ ОДНОЭЛЕКТРОННОГО ПЕРЕНОСА ПРИ ОКИСЛЕНИИ *п*-ФЕНЕТИДИНА СОЕДИНЕНИЯМИ ВАНАДИЯ (V)

В настоящее время широкое распространение получила концепция, согласно которой окислительно-восстановительные реакции с участием неорганических веществ протекают по механизму, включающему, по крайней мере, три стадии: образование «первичного» (precursor) комплекса

между реагентами, перенос электрона в этом комплексе и разрушение образовавшегося «последующего» (successor) комплекса (1, 2). Насколько нам известно, до настоящего времени при изучении какой-либо окислительно-восстановительной реакции не удавалось экспериментально проследить все стадии предполагаемого механизма.

реакции окисления При изучении n-фенетидина ванадием (V) на основании данных, полученных методом э.п.р. и спектрофотометрическим методом, нам удалось экспериментально обнаружить все три стадии процесса окисления восстановления. Сам перенос электрона с *n*-фенетидина на ванадий (V) был обнаружен по появлению сигналов э.п.р. ванадия (V) и катион-радикалов n-фе-Образование первичного петидина. комплекса между ванадием (V) и n-фенетидином было установлено по наличию индукционного периода, а расход последующего комплекса — по понижению концентрации катион-радикала n-фенетидина.

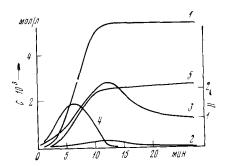


Рис. 1. Зависимость концентрации продуктов реакции и зависимость оптической плотности раствора при $560\,\mathrm{M}\mu$ от времени при взаимодействии вападия (V) с n-фенетидином. Концентрация реагентов: ванадат аммония $5.34\cdot10^{-2}\,\mathrm{мол/n};\ n$ -фенетидин солянокислый $8.3\cdot10^{-2}\,\mathrm{мол/n};\ pH 1.8,\ t=20^\circ\mathrm{C}:\ I-\mathrm{изменение}$ концентрации ванадия (IV), $2-\mathrm{изменениe}$ концентрации радикала (HPhen'+), $3-\mathrm{изменениe}$ оптической плотности раствора при $560\,\mathrm{M}\mu$, $4-\mathrm{изменениe}$ комилекса, $5-\mathrm{изменениe}$ концентрации хинонимина

Эти последовательные этапы окислительно-восстановительной реакции описываются уравнениями, находящимися в согласии с ранее опубликованными нами данными (3):

$$HOVO^{2+} + HN^{+}H_{2}C_{6}H_{4}OC_{2}H_{5} \xrightarrow[k_{-1}]{k_{1}} [HOV^{V}O...HNH_{2}C_{6}H_{4}OC_{2}H_{5}]^{3+},$$
(1)

$$[\text{HOV}^{\text{VO}} \dots \text{HNH}_2\text{C}_6\text{H}_4\text{OC}_2\text{H}_5]^{3+} \xrightarrow[k_{-2}]{} [\text{HOV}^{\text{IV}}\text{OH} \dots \dot{\text{N}}\text{H}_2\text{C}_6\text{H}_4\text{OC}_2\text{H}_5]^{3+}, \tag{2}$$

[HOV^{IV}OH ...
$$\dot{N}H_2C_6H_4OC_2H_5$$
]³⁺ $\xrightarrow[k_-]{k_3}$ HOVOH²⁺ + $\dot{N}H_2C_6H_4OC_2H_5$. (3)

Если $k_1 \gg k_{-1}$; $k_2 \gg k_{-2}$ и $k_3 \gg k_{-3}$, то исследованные реакции (1)—(3) можно выразить следующими кинетическими уравнениями:

$$d[A]/dt = k_1([V^V]_0 - [A] - [V^{IV}])[Phen]_0 - k_2[A],$$
 (4)

(в опытных условиях $[Phen]_0 \gg [V^V]_0$)

$$d[B]/dt = k_2[A] - k_3[B], \tag{5}$$

где $A-[HOV^VO...HNH_2C_6H_4OC_2H_5]^{3+}$ и $B-[HOV^{IV}OH...\dot{N}H_2C_5H_4OC_2H_5]^{2+}$. На рис. 1 представлены кинетические данные реакции между ванадием (V) и n-фенетидином. Концентрация ванадия (IV) определялась по интенсивности его октетного сигнала э.п.р. с применением стандартного раствора ванадия (IV), а концентрация радикала по интенсивности его синглетного сигнала э.п.р. с применением формулы (4):

$$[R'] = [V^{IV}] I_{V^{IV}} (\Delta h_{V^{IV}})^2 / I_{R'} (\Delta h_{R'})^2,$$
 (6)

где I — интегральная интенсивность линии э.п.р., Δh — расстояние между максимумами.

В условиях эксперимента n-фенетидин практически полностью протонирован (5), преобладающей равновесной формой ванадия(V) является ион $^VOOH^{2+}(VO_2^+)$ (6 , 7). Поскольку в условиях наших опытов метод э.п.р. не позволял отличить ванадий(IV), связанный в последующем комплексе, от аквакомплекса ванадия(IV), можно было формально считать, что:

$$d[V^{IV}]/dt = k_2[A]. \tag{7}$$

Анализ экспериментальных данных рис. 1 показал, что кинетическая кривая образования ванадия (IV) (расходование ванадия (V)), начиная с девятой минуты, после начала реакции хорошо описывается уравнением первого порядка, что позволило нам рассчитать константу скорости $k_2 = 6.67 \cdot 10^{-3} \, \mathrm{cek^{-1}}$. Измерив $d[V^{\mathrm{IV}}] / dt$ графическим методом дифференцирования в каждой минуте после начала реакций по выражению (7), подсчитали изменение концентрации первичного комплекса A по времени (рис. 1, 4).

Константы скорости расходования радикала $k_{\rm R}=1,96\cdot 10^{-3}$ сек⁻¹ подсчитали по уменьшению концентрации радикала HPhen^{*+} после того, как стадия переноса электрона практически закончена и концентрация ванадия (IV) становится равной начальной концентрации ванадия (V). Тот факт, что радикал HPhen^{*+} расходуется по мономолекулярной реакции, дает основание считать, что скорость лимитирующим этапом реакции расходования радикалов является разрушение последующего комплекса B, т. е. $k_{\rm R}=k_3$, а измеряемая концентрация радикала HPhen^{*+} равна концентрации последующего комплекса.

Тогда уравнение (5) превращается в следующее:

$$d[R^*]/dt = k_2[A] - k_3[R^*].$$
 (8)

В точке максимума зависимости концентрации радикала HPhen*+ от времени должно выполняться условие:

$$k_2[\mathbf{A}] = k_3[\mathbf{R}']. \tag{9}$$

Величины левой части уравнения (9) подсчитаны на основании данных об изменении концентрации ванадия (IV) (рис. 1, I), а правой — радикала HPhen⁺ (рис. 1, I). При подставлении экспериментальных значений этих величин уравнение (9) превращается в тождество.

В точке максимума зависимости концентраций первичного комплекса А от времени должно выполняться условие (10)

$$k_1([V^{V}]_0 - [A] - [V^{IV}]) / [Phen]_0 = k_2[A],$$
 (10)

исходя из которого подсчитали константу скорости образования первичного комплекса: $k_1[\text{Phen}]_0 = 9.3 \cdot 10^{-3} \text{ сек}^{-1}$ или $k_1 = 1.12 \cdot 10^{-1} \text{ сек}^{-1} \cdot \text{мол}^{-1}$. Текущую концентрацию (рис. 1, 5) конечного продукта окисления n-фенетидина — хинонимина $O = \sum_{i=1}^{n} N = \sum_{i=1}^{n} OC_2H_5$ (8),

образовавшегося при рекомбинации двух радикалов, подсчитали по уравнению:

 $[Qui]_t = \frac{1}{2} ([V^{IV}]_t - [R^*]_t). \tag{11}$

Спектрофотометрические исследования показали, что при взаимодействии ванадия (V) с n-фенетидином появляется интенсивная полоса поглощения при 553 м μ , которая затем исчезает с появлением и ростом интенсивности полосы поглощения хинонимина при 520 м μ (9). Параллельные исследования методом э.п.р. и спектрофотометрическим реакции окисления n-фенетидина рядом других окислителей и окисления n-фенетидина на аноде показали (10), что полоса при 553 м μ соответствует поглощению катион-радикала n-фенетидина.

Как видно из рис. 1, оптическая плотность раствора при 560 мµ изменяется симбатно с изменением [HPhen'+]. В конце реакции при достижении нулевой концентрации радикала HPhen'+ оптическая плотность раствора имеет определенное значение, соответствующее поглощению хинонимина. На основании данных об оптической плотности раствора при протекании реакции между ванадием(V) и n-фенетидином (рис. 1, 3) были подсчитаны следующие молярные коэффициенты светопоглощения хинонимина и радикала HPhen⁺ при 560 мµ $\varepsilon_{Qu1} = 3,5 \cdot 10^3$ и $\varepsilon_R = 5 \cdot 10^4$.

Киевский государственный университет им. Т. Г. Шевченко

Поступило 26 VII 1971

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ Т. А. Тигпеу, Oxidation Mechanisms, Butterworth, London — Washington, 1965.

² Н. Таи b е, Proc. XII Intern. Conf. on Coord. Chem., Sydney, 1969, p. 60; N. Sutin Ibid., p. 36.

³ Б. Г. Желязкова, К. Б. Яцимирский, Теорет. эксп. хим., 8, № 2 (1972).

⁴ Л. А. Блюменфельд, В. В. Воеводский, А. Г. Семенов, Применение электронного параматнитного резонанса в химии, 1962, стр. 89.

⁵ А. Альберт, Е. Сержевт, Константы ионизации кислот и оснований, 1964, стр. 439.

⁶ М. Т. Роре, В. W. Dale, Quart. Rev., 22, 527 (1968).

⁷ Г. Ст. Николов, К. Б. Яцимирский, Теорет. эксп. хим., 6, 773 (1969).

⁸ Р. R. Воптс е v, В. G. Jeliazkowa, Mikrochim, Acta (Wien), Н. 4, 116 (1967).

⁹ Р. R. Воптс е v, В. G. Jeliazkowa, Inorg. chim. acta, 1, 149 (1967).

¹⁰ К. Б. Яцимирский, Б. Г. Желязкова, Теорет. эксп. хим., 8, № 3 (1972).