УДК 541.67 + 547.233/234

ФИЗИЧЕСКАЯ ХИМИЯ

Е. В. ТИТОВ, Л. М. КАПКАН

ХИМИЧЕСКИЕ СДВИГИ ПРОТОНОВ АМИНОГРУПП И ГИБРИДНОЕ СОСТОЯНИЕ ATOMA AЗОТА

(Представлено академиком О. А. Реутовым 29 IV 1972)

При изучении методом я.м.р. аминосодержащих органических соединений оказалось, что величины химических сдвигов сигналов протонов их аминогрупп (δ) занимают широкую область — от 1 до 11 м.д. ($^{1-4}$). Однако каждый класс соединений в пределах этой области характеризуется своим интервалом значений δ (рис. 1). Так, $\delta_{\rm NH_2}$ алифатических аминов распо-

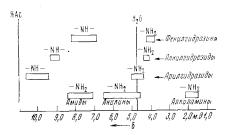


Рис. 1. Характерные области химических сдвигов протонов аминогрупп в аминосодержащих органических соединениях (растворы в ДМСО)

ложены в правой (высокопольной), а $\delta_{\rm NH_2}$ амидов и $\delta_{\rm NH}$ гидразидов карбоновых кислот — в левой (низкопольной) ее части. Интервал значений $\delta_{\rm NH_2}$ ароматических аминов занимает, как видно из рис. 1, промежуточное положение. Вместе с тем исследования амидов * показали, что атом азота в них находится в sp^2 -гибридном состоянии (см., например, (2) и цитированную там литературу), тогда как в алифатических аминах он sp^3 -гибридизован (5). В m- и m-замещенных анилинах по мере роста электроноакценторности заместителей s-ха-

ноакценторности заместителей s-характер связей N—H растет, а для атома азота в этих соединениях свойственно промежуточное sp^3-sp^2 -гибридное состояние ($^{6-8}$). Между расположением интервалов значений $\delta_{\rm NH_2}$, характерным для каждого класса аминосодержащих соединений, и гибридным состоянием соответствующего атома азота ** в них легко заметить нараллелизм, хотя до сих пор такая связь установлена не была и величины химических сдвигов протонов для оценки характера гибридизации атомов азота не использовались. Несомненно, важной для этой цели является полученная недавно Аксенродом с сотрудниками (9) и Бремвеллом и Рэндоллом (10) линейная зависимость между константами спин-спинового взаимодействия $J_{\rm N^{15}-H}$ и σ -постоянными Гаммета в ряду замещенных анилинов, если учесть, что константа $J_{\rm N^{15}-H}$ линейно зависит от s-характера связи N—H (11). Однако определение $J_{\rm N^{15}-H}$ связано с необходимостью синтеза, в ряде случаев сложного, соединений с ядрами N^{15} , а измерение констант $J_{\rm N^{16}-H}$ затруднительно из-за значительного уширения сигналов протонов, обусловленного квадрупольным взаимодействием.

Мы сопоставили величины $\delta_{\rm NH_2}$ аминосодержащих соединений со значениями s-характера их связей N-H***. Оказалось, что эксперименталь-

^{*} И.-к. спетроскопические в основном.

^{**} Гибридное состояние каждого из атомов азота фрагмента — $NH - NH_2$ в монозамещенных гидразина в зависимости от электронного характера заместителя в большей или меньшей степени различно.

^{***} Величины s для метиламина взяты из $(^5)$, для амидов — из $(^2)$, для анилинов в $CDCl_3$ и ДМСО- d_5 получены из констант спин-спинового взаимодействия $J_{N^{15}-H}$ $(^9)$ по уравнению $s(\%)=0.43~J_{N^{15}-H}-6~(^{11})$, для бензиламинов — из $(^{17})$.

ные точки расположились на двух прямых (I и II, рис. 2). На прямую I, аналитическое выражение которой имеет вид

$$s(\%) = 2.1\delta_{\text{NH}_2} + 18.4, \quad r = 0.976,$$
 (1)

удовлетворительно укладываются точки для тех соединений, атом азота которых регибридизируется (по Моффиту — Бенту — Яцимирскому (12-14)) под влиянием структурных факторов. А именно, по мере увеличения электроотрицательности атома X связь $>X-\mathrm{NH}_2$ приобретает все больший р-характер, причем соответственно растет s-составляющая связи N-H и

р-характер орбитали неподеленной пары электронов. Основность аминогруппы при этом падает, что полтверждается данными На прямую II, параллельную оси абсписс, ложатся точки для амидов. Атом азота в амидах находится в sp^2 -гибридном состоянии и рост электроноакцепторности заместителей вызывает не дальнейшую его регибринизацию, а уменьшение заселенности связи N-H. Этим последним обстоятельством и следует объяснить рост химических сдвигов в ряду амидов.

Можно полагать, что для соединений, атом азота которых напромежуточном В $sp^3 - sp^2$ -гибридном состоянии (например, анилины), влияние замена поведение N-H * определяется двумя фак-



Рис. 2. Зависимость между s-характером связей N--Н и химическими спвигами протонов группы — NH_2 . a — метиламин, δ бензиламины, в — анилины (растворы в $\coprod MCO-d_6$), г — апилины (растворы в $CDCl_3$), ∂ — амиды

торами: регибридизацией и степенью заселенности их связывающих орбиталей. В соединениях, где атом азота sp^2 -гибридизован и возможности регибридизации исчерпаны (например, амиды), играет роль только один из указанных факторов - второй. В пользу такого предположения свидетельствует уменьшение углового коэффициента в полученных нами линейных корреляцих $\delta_{\rm HN^2} = \phi (p K_{\rm BH}^+)$ от ~ 0.40 (для бензиламинов, анилинов и фенилгидразинов) до 0,26 (для амидов).

Следует отметить, что значения s-характера связей N—H, полученные из частот их валентных колебаний с использованием уравнений поля валентных сил Линнета (15), хорошо согласуются с соответствующими величинами, вычисленными из данных по константам спин-спинового взаимодействия $J_{N^{15}-H}$. Так, для анилина s(%)=0.270 (и.-к.) и 0.275 (я.м.р.), трихлорацетамида -0.332 и 0.327 соответственно. Это указывает на пригодность обоих методов для оценки гибридного состояния атома азота первичной аминогруппы.

Уравнение (1) наглядно показывает наличие связи между величинами химических сдвигов протонов первичной аминогруппы и гибридным состоянием ее атома азота. Если по какой-либо причине и.-к. спектроскопическое определение s-характера связей N-H затруднено **, применение этого уравнения становится, пожалуй, единственным в настоящее время простым способом получить указанную информацию. Так, например, мы определили s-характер связи N—H первичных аминогрупп в фенилгидра-

^{*} И соответственно их спектроскопических характеристик. ** Так, для частот валентных колебаний N — Н в и.-к. спектрах монозамещенных гидразина применение уравнений Линнета некорректио из-за сильного киневзаимодействия колебаний N — Н первичной и вторичной аминогрупп (16).

зине и бензгидразине, который оказался соответственно равным 0,268 и 0,276. Следовательно, если в фенилгидразине конфигурация группы — NH₂ близка к таковой в бензиламинах, то в бензгидразиде она такая же, как в анилине.

Спектры я.м.р. получены на приборе ЯМР-5535 при частоте 40 Мгц для растворов веществ в диметилсульфоксиде. Химические сдвиги измерены относительно циклогексана, гексаметилдисилоксана и диметилсульфоксида как внутренних стандартов и экстраполированы на нулевую концентрацию.

Донецкое отделение физико-органической химии Института физической химии им. Л. В. Писаржевского Академии наук УССР

Поступило 25 IV 1972

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ Е. В. Титов, Л. М. Капкан, ДАН, 184, 1342 (1969). ² Е. В. Титов, М. В. Поддубная, Л. М. Капкан, Теоретич. и эксп. хим., 6, 516 (1970). ³ Е. В. Титов, Н. Г. Корженевская и др., Журн. орг. хим., 7, 2552 (1971). ⁴ Е. В. Титов, Л. М. Капкан и др., Реакцион. способн. орг. соед., 5, 673 (1968). ⁵ Е. В. Титов, М. В. Поддубная, Теоретич. и эксп. хим., 8, 279 (1972). ⁶ Е. В. Титов, М. В. Поддубная, Теоретич. и эксп. хим., 8, 279 (1972). ⁶ Е. В. Титов, М. В. Поддубная, Л. М. Литвиненко, там же, 2, 271 (1966). ⁷ S. Califano, R. Моссіа, Gazz. chim.-ital., 86, 1014 (1966). ⁸ Л. Беллами, Новые данные по ИК-спектрам сложных молекул, М., 1971. ⁹ Т. Ахепгод, Р. Ргедовіп еt аl., Ј. Ат. Сhem. Soc., 91, 3681 (1969). ¹⁰ М. Вгат well, Е. Randall, Chem. Commun., № 6, 250 (1969). ¹¹ G. Віпsch, Ј. Lambert et al., J. Am. Chem. Soc., 86, 5564 (1964). ¹² W. Moffit, Proc. Roy. Soc., 202, 548 (1950). ¹³ Н. Вепt, Chem. Rev., 61, 275 (1961). ¹⁴ К. Б. Яцимирский, Теоретич. и эксп. хим., 1, 41 (1965). ¹⁵ Ј. Lіппеt, Тгаля. Farad. Soc., 41, 223 (1945). ¹⁶ С. И. Чекушин, Е. В. Титов, Оптика и спектроскопия, 28, 817 (1970). ¹⁷ Е. В. Титов, В. И. Рыбаченко и др., Реакцион. способн. орг. соед., 8, 997 (1971).