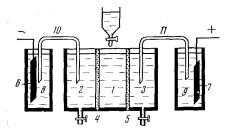
Доклады Академии наук СССР 1973. Том 208, № 3

ОКЕАНОЛОГИЯ

ю. б. холина, в. а. Заринский, с. и. попов, л. м. хитров, л. х. хаева

РАЗДЕЛЕНИЕ ДИСПЕРГИРОВАННЫХ КОМПОНЕНТОВ ОКЕАНИЧЕСКОЙ ВОДЫ МЕТОДОМ ЭЛЕКТРОФИЛЬТРАЦИИ

(Представлено академиком А. В. Виноградовым 22 XI 1971)


Изучение форм нахождения рассеянных элементов океанической воды является первоочередной задачей в проблеме миграции и перераспределения микроэлементов в процессе осадкообразования.

Нами было изучено фазовое состояние и степень окисления Мп в поверхностных водах открытого океана как теоретически— методом термодинамического расчета в системе Eh— pH (4), так и экспериментальными методами (2 , 3). Одним из экспериментальных методов изучения состояния Мп явился метод фильтрации через электретные мембраны в электрическом поле, разработанный в нашем институте для разделения диспергированных компонентов от дисперсионной среды и модифицированный нами для условий океанической воды.

Принцип действия метода заключается в отделении заряженных частии от дисперсионной среды через электретные мембраны из высокополимерных материалов. Наложение электрического тока на мембрану, погруженную в дисперсионную среду, вызывает смещение двойного диффузного слоя в порах мембран; при этом в результате взаимодействия поляризованных элементов мембрана приобретает потенциал, препятствующий прохождению коллоидных частиц. Получаемая таким образом эффективная пористость мембраны значительно превосходит ее технологическую пористость.

Фильтрация проводится в системе ячеек, представленной на рис. 1. Заполнение камер производится в следующем порядке: 1) электродные пространства заполняются дистиллированной водой, 2) электродные камеры заполняются океанической водой, 3) исследуемый раствор подается в реакторную камеру, одновременно включается ток.

Рис. 1. Схема электрофильтрации. I — реакторная камера, 2, 3 — катодная и анодная камеры, 4 — электретная мебрана, 5 — анионитная мембрана, 6, 7 — электроды, 8, 9 — электродные пространства, 10, 11 — электролитические ключи

Оптимальные условия электрического режима, экспериментально найденные для океанической воды, составляют: V=100 в, I=35 µа. При этом эффективная пористость мембраны, установленная по прохождению коллоидных частиц Ag_2S с известной дисперсностью, составляет менее $8\cdot 10^{-6}$ см. Скорость электрофильтрации при полезной площади мембраны 10 см² достигает 3-4 мл/мин.

Методом электрофильтрации было исследовано состояние Mn в пробах поверхностных вод открытых районов Тихого океана (при концентрации Mn $2.9~\mu r/\pi$, pH 8.08~u~Eh~+0.35~в) с использованием Mn 54 без носителя.

Как показал термодинамический расчет, при указанных значениях физико-химических параметров среды и концентрации Мп устойчивой формой является растворимая форма хлоридных, гидрооксо- и сульфатных комплексов Мп со степенью окисления +2.

Было изучено состояние Мъ⁵⁴ в пробах океанической воды при различном времени выдерживания (до 23 суток), при различных концентрациях изотопного носителя (до 12 µг/л) и, кроме того, в присутствии коллоидного сорбента – среды выращивания одноклеточных океанических водорослей (после их отделения). Количество электрофильтруемого Mn⁵⁴ вы-

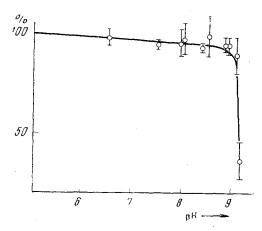


Рис. 2. Содержание электрофильтруемой формы Мп54 при различных значениях рН среды

ражалось в процентах к исход-

Было показано, что в условиях океанической воды Mn54 нахолится практически ностью $(94.8 \pm 0.8\%)$ виде положительно заряженных частиц с дисперсностью менее 8. $\cdot 10^{-6}$ см. Из результатов, представленных на рис. 2, можно видеть, что Mn⁵⁴ сохраняет указанное состояние в широких пределах рН вплоть до 9,2, после чего наблюдается резкое уменьшение содержания электрофильтруемой формы, что может быть объяснено гидролидвухзом И трехвалентного $\operatorname{Mn}^{(4)}$.

На состояние Mn⁵⁴ не ока-

зывает существенного ($t\alpha = 0.5$) влияния выдерживание раствора в тече: ние 23 суток, увеличение концентрации изотопного носителя на порядок, а также присутствие коллоидного сорбента.

Полученные результаты находятся в соответствии с данными (5) о поведений ${\rm Mn^{54}}$ в растворах электролитов и $c~(^{6-9})$ о состоянии ${\rm Mn}$ в океанической воде. Существование растворенного ${\rm Mn}$ в океанической воде необходимо учитывать при изучении его геохимической миграции. Можно предполагать, что хемогенные процессы не будут иметь решающего значения при выведении растворенного Mn в донные отложения при указанных физико-химических параметрах. В этой связи особенно важно изучение роли природных сорбентов, и в первую очередь планктона и взвеси, в вертикальной миграции и перераспределении Мп в океане.

В заключение следует отметить, что предложенный метод электрофильтрации, обладая достаточной производительностью, простотой в эксплуатации, может быть рекомендован как для разделения диспергированных сред, так и для анализа фазового и валентного состояния микроэлементов и их радионуклидов.

Институт геохимии и аналитической химии им. В. Й. Вернадского Академии наук СССР Москва

Поступило 40 VIII 1971

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

1 Р. М. Гаррелс, Ч. Л. Крайст, Растворы, минералы, равновесия, М. 1968.
² Л. М. Хитров, Ю. Б. Холина, Сборн. Усп. совр. биохим. и анал. хим., 1972., стр. 493. ³ В. А. Заринский, Ю. Б. Холина, там же, 1972, стр. 570. ⁴ И. Е. Старик, Основы радиохимии, М.— Л., 1969. ⁵ Р. Вепев, А. Garba, Radiochem. асta, № 5, 99 (1966). ⁶ Д. Ф. Слоуей, Д. У. Худ, Тез. II Международн. океаногр. конгр., М., 1966. ⁷ Э. Д. Гольдберг, Вкн. Геохимия литогенеза, М., 1963. ⁸ D. Хооd, Mar. Biol. Ам. Rev., № 1, 129 (1963). ⁹ E. Rona, D. Хооd, Limnology and Oleanography, 7, 204 (1962). Okeanography, 7, 201 (1962).