Доклады Академии наук СССР 1972. Том 207, № 6

УДК 577,3+581,43

БИОХИМИ**Я**

Ю. Е. ГИЛЛЕР, Л. Н. ЮХАНАНОВА, С. К. АБДУЛЛАЕВА

О ПРИРОДЕ АГРЕГИРОВАННЫХ ФОРМ ХЛОРОФИЛЛА, ОБРАЗУЮЩИХСЯ В ИСКУССТВЕННОМ ПИГМЕНТ-БЕЛКОВОМ КОМПЛЕКСЕ

(Представлено академиком А. И. Опариным 11 IV 1972)

Сейчас, когда представление о многообразии пативных форм хлорофилна и его аналогов в хлоропластах клеток высших растений и водорослей и хроматофорах бактерий является общепризнанным, возникает необходимость анализа причии и условий возникновения различных по спектральным свойствам и функциональной роли в фотосинтезе форм ингментов.

Пигмент-пигментное взаимодействие, обусловленное различными видами агрегации молекул хлорофилла (1-3), объясняет лишь сам факт существования in vivo его дискретных спектральных форм, условия же возниковения разных типов агрегатов создаются, по-видимому, пигмент-белковым взаимодействием и, в конечном итоге, состоянием белковой или белковолипоидной матрицы пативного фитохромолипопротендного комплекса. Проведенный недавно с этой точки зрения анализ молекулярной организации пигментной системы фотосинтезирующих бактерий обнаружил изменения спектральных свойств нативных форм бактериохлорофилла при конформационных перестройках носителей и выявил роль белков и липидов в конфигурации упаковок агрегированных форм пигмента (4, 5).

Удобной моделью для изучения значения состояния белкового или белково-липоидного носителя в образовании различных спектральных форм хлорофилла являются искусственные комплексы пигментов с белками или липопротеидами, в которых образуются формы пигмента, близкие по спек-

тральным свойствам к нативным $\binom{6}{7}$.

В настоящей работе приводятся данные о характере агрегированных форм хлорофилла, образующихся в искусственном пигмент-белковом комплексе, и об их изменениях под действием ацетона. Этот растворитель при концентрациях виже 50% вызывает изменения спектральных свойств хлорофилла, обусловленные изменениями пигмент-пигментного и пигмент-белкового взаимодействия, в хлоропластах (⁸, ⁹), гомогенатах листьев (¹⁰) и квантозомах (¹¹), и приводит к «переупаковке» молекул бактериохлорофилла (предположительно, вследствие конформационных перестроек носителя) в хроматофорах бактерий (⁵). При больших концентрациях ацетона происходит отрыв пигмента от носителя из-за денатурации последнего (⁵, ⁹).

Объектом исследования служил искусственный водорастворимый комнлекс спектрально чистого хлорофилла а с казепновой кислотой, полученный ранее описанным способом (7, 12). Концентрация пигмента в системе

была $0.9 \cdot 10^{-4}$ мол/л (17.5% в расчете на белок).

Спектры поглощения комплекса были записаны на спектрофотометре СФ-10, спектры флуоресцепции— на регистрирующем спектрофлуориметре (7) по общепринятой методике. Толщина слоя объекта при спектрофотометрии была 1 см, при спектрофлуориметрии 0,1 см.

При изучении действия ацетона спектральные параметры комплекса ре-

гистрировались сразу после добавления растворителя.

Положение максимумов полос (в мµ) поглощения и флуоресценции хлорофилла а в исследованном комплексе следующее:

Абсорбционная полоса с максимумом 675 мµ принадлежит, вероятно, слабоагрегарованной форме ингмента—ассоциатам, обнаруживаемым в бинарной смеси этапол—вода (12) и наблюдаемым по спектрам второй производной в клетках высших растений и водорослей (14) и в комплексах из хлоропластов, разделенных электрофорезом на полнакриламидном геле (15).

Образующаяся в нашей модели агрегированная форма хлорофилла с максимумом поглощения 704 мµ (хл. 704) наблюдалась в концентриро-

Рис. 1. Действие ацетона на спектр поглощения хлорофилла в комплексе. I — контроль; 2 — ацетон 10%, 3 — 20, 30 и 40%, 4 — 50%, 5 — 60%. a — динамика изменения оптической илотности в максимумах поглощения: I — 675 — 670 м μ , 2 — 704 м μ , 3 — 748 м μ

750 mu

700

À -

650

ванном растворе в ппридине (16) и in vivo (9, 14, 16).

Агрегаты хлорофилла а, ответственные за абсорбционную полосу с максимумом 740—750 мµ (хл. 748), обнаруженные в искусственных пигмент-белково - липоидных комплексах (6, 12), идентифицированы как кристаллические образования (17). Такая форма пигмента наблюдалась ранее в концентрированных растворах, монослоях и пленках (2); в нативных системах подобные агрегаты хлорофилла отсутствуют (9, 14).

Наблюдаемый нами эмиссионный спектр хлорофилла а в комплексе при —196° (табл. 1) представляет собой результирующую полос флуоресценции имеющихся в системе форм пигмента. Положение отдельных полос спектра совпадает с таковым ій vivo (18) и в модельных системах без носителя (2).

На рис. 1 приведены спектры поглощения хлорофилла в комплексе при различных копцентрациях ацетона и динамика изменения при этом содержания в системе отдель-

ных форм пигмента (рис. 1a). Как следует из этого рисунка, хл. 704 исчевает полностью уже при 20% ацетона, что указывает на слабую связь этой формы с носителем. Возможно, что эта связь носит адсорбционный характер. Присутствие этого типа агрегатов in vivo (9, 14, 16) делает вероятным предположение об адсорбционном механизме фиксации на липопротеидном носителе по крайней мере части хлорофилла (19).

Ацетон при концентрации 10—40% практически пе оказывает влияния на содержание в комплексе хл. 748. В интервале концентраций 40—60% (когда происходит денатурация белка) эта форма исчезает. Связь разрушения хл. 748 с денатурационными изменениями носителя и его скачкообразный характер (рис. 1a), схожий с наблюдаемой ранее одной из па-

тивных форм бактернохлорофилла (5), указывает на связь структуры этого типа агрегатов с состоянием белка-носителя. Подтверждением этому служат данные о возможности вызвать образование хл. 748 в нативном комплексе обработкой горячими органическими растворителями (20) и в искусственном комплексе — понижением рН (12), т. е. воздействиями, несомненно влияющими не только на пигмент-пигментное взаимодействие, но и на носитель.

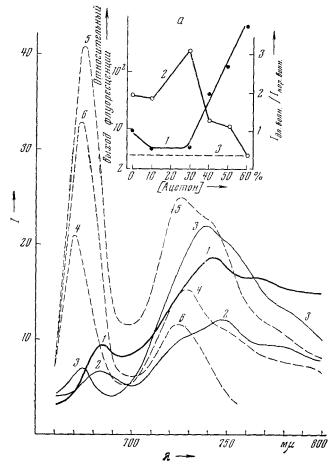


Рис. 2. Действие ацетопа на спектр флуоресценции при —196° хлорофилла а в комплексе. I — контроль; \mathcal{Z} — ацетоп 10%, \mathcal{Z} — 30%, \mathcal{Z} — 40% (масштаб изображения 1: 2), \mathcal{Z} — 50% (1: 2), \mathcal{Z} — 60% (1: 20). \mathcal{Z} — изменения относительного выхода флуоресценции в максимуме 685—675 мµ (\mathcal{Z}) и отношения интенсивностей флуоресценции в максимумах 746—724 мµ и 685—675 мµ (\mathcal{Z}) и (\mathcal{Z}) — 685—675 мµ (\mathcal{Z}) и (\mathcal{Z}) — 685—675 мµ (\mathcal{Z}) — 685—685 мµ (\mathcal{Z}) — 685 мµ (\mathcal{Z}) —

Как следует из рис. 1, с повышением концентрации ацетона в системе главный максимум поглощения хлорофилла смещается в коротковолновую сторону (675 м $\mu \to 670$ м μ). Даже при концентрации ацетона 60%, т. е. при денатурации носителя, пигмент не переходит в раствор, аналогично тому, как это отмечалось ранее для хлоропластов (9). В этих же условиях пигмент-пигментное взаимодействие полностью прекращается, сохраняется лишь пигмент-белковое взаимодействие, которым объясняется наблюдаемое «краспое смещение» главного максимума поглощения (670 м μ) в сравнении с его положением в ацетоновом растворе (665 м μ) (8 , 7).

Дополнительную информацию об изменениях состояния хлорофилла в комплексе при воздействии ацетона несут спектры флуоресценции при

температуре жидкого азота (рис. 2). Как следует из этого рисунка, при концентрациях ацетона, больших 30%, идет дезагрегация пигмента: уменьшение интенсивности и, в конечном итоге, исчезновение длинноволновых максимумов и замена их полосой 723 м μ и резкое увеличение выхода флуоресценции в области коротковолнового максимума, как это наблюдалось ранее для гомогенатов листьев (10). При этом полное исчезиовение агрегированной формы пигмента, ответственной за флуоресценцию в области 740-742 м μ (725-735 м μ (7) происходит в интервале концентраций 50-60%, т. е. при денатурации носителя (отношение $I_{дл. воли}$ / $I_{вор. воли}$ достигает уровня, характерного для растворов (21), рис. 2a).

При концентрациях ацетона, меньших 30%, вероятно, имеет место «переупаковка» молекул хлорофилла, подобная наблюдаемой в хроматофорах бактерий (5). Об этом свидетельствует некоторое снижение выхода флуоресценции в коротковолновом максимуме — явление, ранее отмеченное для хлоропластов при комнатной температуре (5), и увеличение отпошения $I_{дл. воли}$ / $I_{кор. воли}$, указывающее на уменьшение относительного содержания мономерных и слабо агрегированных форм ингмента (рис. 2a). Однако подобная «переупаковка» в искусственном комплексе не наблюдается столь явно, как в нативных комплексах хроматофоров бактерий (5). Поэтому изменения состояния хлорофилла такого типа не заметны в спектре поглощения, самая длинноволновая полоса которого в указанном интервале концентраций растворителя не меняется, а интенсивность полосы 675 мµ растет за счет дезагрегации формы хл. 704 (рис. 1).

Подводя итоги всему сказанному выше, можно сделать заключение, что условия ингмент-пигментного взаимодействия (агрегация) молекул хлорофилла а в искусственном пигмент-белковом комплексе, так же как это было показано для бактернохлорофилла в хроматофорах $\binom{4}{5}$, зависят от состояния посителя. Этот результат в совокупности с ранее полученными данными о сходстве состояния пигментов в искусственных комплексах и in vivo $\binom{6}{5}$, и о влиянии белка на проявление спектральных свойств хлорофилла $\binom{22}{5}$ позволяет считать перспективным дальнейшее использование описываемой модели для изучения молекулярной организации пигментной системы хлоропластов.

Институт физиологии и биофизики растений Академии наук ТаджССР Душанбе Поступило 47 IV 1972

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

⁴ А. А. Красновский, В ки.: Механизм фотосинтеза, Тр. V Междупароли. биохимич. конгр.. сими. VI, Изд. АН СССР, 4962, стр. 496; Биохимия и биофизика фотосинтеза, «Наука»; 1965, стр. 41. ² Ф. Ф. Литвиц, В ки. Биохимия и биофизика фотосинтеза, «Наука», 1965, стр. 96. ³ Б. А. Гуляев, Ф. Ф. Литвин, Биофизика. 42, 845 (1967). ⁴ Ю. Е. Ерохин, Тез. доки, на симиозиумах И Всесоюзи. биохим. съезда, сими. X, Ташкент, 1969, стр. 278. ⁵ Ю. Е. Ерохин, О. А. Синегуб, Мол. биол., 4, 401, 541 (1970); 5, 472 (1971). ⁶ Ю. Е. Гиллер, Виофизика, 13, 1006 (1968). ⁷ Ю. Е. Гиллер, Г. В. Красичкова, Д. И. Сапожинков, ДАН, 182, 1230 (1968); Биофизика, 15, 38 (1970). ⁸ Л. А. Тумерман, О. Ф. Борисова, А. Б. Рубии, Биофизика, 6, 645 (1964). ⁹ Л. В. Тhomas, U. P. Van Der Wal, Biochim. et biophys. acta, 79, 490 (1964); J. В. Thomas, W. F. L. Flight, ibid., p. 500. ¹⁰ Л. М. Воробьева, А. А. Красновский, Биофизика, 42, 240 (1967). ¹¹ К. Sauer, R. В. Рагк, Віосніш. et biophys. acta, 79, 476 (1964). ¹² ИО. Е. Гиллер. Л. Н. Юхананова, Биохимия, 35, 873 (1970). ¹³ Г. И. Гурипович, Т. И. Стрежова, Биофизика, 13, 782 (1968). ¹⁴ Ф. Ф. Литвин, Б. А. Гуляев, Биол. науки. ¹⁵ О. Масhold, А. Меізtег, К. Аdler, Рююкупінейса, 5, 460 (1971). ¹⁵ М. Вгоd у, S. S. Вгоd у, Віосніш. et biophys. acta, 112, 54 (1966). ¹⁷ Е. Řаbinowitch, Е. Е. Јасов et al., 7s. Рhys., 133, 261 (1965). ¹⁸ Л. С. Goed heer, Biochim. et biophys. acta, 88, 304 (1964). ¹⁹ Л. И. Некрасов, Биофизика, 12, 215 (1967). ²⁰ Л. А. Lippincott, J. Aghion et al., Arch. of Biochem. and Biophys., 98, 17 (1962); J. Aghion, Biochim. et biophys. acta, 66, 212 (1963); J. Aghion, E. Porcile, Nature, 197, 4110 (1963). ²¹ Е. Рабинович, Фотосинтез, 2, ИЛ, 1953. ²² В. Д. Семигаевский, С. И. Лось, Г. Н. Лозовая, Биофизика, 16, 1117 (1971).