УДК 517.535.4

МАТЕМАТИКА

А. М. СЕДЛЕЦКИЙ

ИНТЕРПОЛЯЦИЯ В ПРОСТРАНСТВАХ НР В ПОЛУПЛОСКОСТИ

(Представлено академиком В. С. Владимировым 15 V 1972)

Пусть $p \in (0, \infty)$; $H^p = H^p(0, \infty)$ обозначает пространство функций, голоморфных в правой полуплоскости, для которых

$$||f(z)|| = \sup_{x>0} \left(\int_{-\infty}^{\infty} |f(x+iy)|^p dy \right)^{1/p} < \infty.$$

Пусть $\Lambda = \{\lambda_n\}$ — последовательность комплексных чисел, $\text{Re }\lambda_n > 0$. Введем оператор T, действующий в H^p по правилу: $Tf(z) = \{f(\lambda_n)\}$. Будем писать $TH^p \subset l^p$, если $Tf \in l^p$ для $\forall f \in H^p$; и $TH^p \supset l^p$, если для $\forall \{c_n\} \in l^p$ $\exists f \in H^p$ так, что $Tf = \{c_n\}$. Пишем $TH^p = l^p$, если одновременно $TH^p \subset l^p$ и $TH^p \supset l^p$. Настоящая работа устанавливает критерий соотношения $TH^p = l^p$.

Теорема. Для того чтобы $TH^p(0, \infty) = l^p$, необходимо и достаточно, чтобы 1^0) $0 < \inf \operatorname{Re} \lambda_n \le \sup \operatorname{Re} \lambda_n < \infty$, 2^0) $\inf_{n \neq m} |\lambda_n - \lambda_m| > 0$.

Пусть $H^p\{|z|<1\}$ есть пространство функций, голоморфных в круге

$$\|z\|<1$$
, для которых $\|g\|=\sup_{r<1}\Bigl(\int\limits_0^{2\pi}|g\left(re^{i\theta}
ight)|^pd\theta\Bigr)^{1/p}<\infty;$ \widetilde{T} — оператор,

действующий в $H^p\{|z|<1\}$ по правилу: $\widetilde{T}g=\{g(z_n)\,(1-|z_n|^2)^{4/p}\}$, $|z_n|<1$. Известен (см. (4), гл. 9) следующий результат (принадлежащий Л. Карлесону (2), Г. Шапиро и А. Шилдсу (4), В. Кабайла (5) соответственно при $p=\infty,\,p\in[1,\infty),\,p\in(0,1)$:

$$ilde{T}H^p = l^p \Leftrightarrow \inf_k \prod_{n
eq k} |z_k - z_n| |1 - \overline{z}_n z_k|^{-1} > 0.$$

Мы не рассматриваем случай $p = \infty$, так как он сразу вытекает из теоремы Л. Карлесона, если воспользоваться отображением круга на полуплоскость.

Лемма 1. Оператор $f(w) \to (1-z)^{-2/p} f\left(\frac{1+z}{1-z}\right)$ устанавливает изоморфизм между пространством $H^p(0, \infty)$ и пространством $H^p\{|z| < 1\}$.

При $p \geqslant 1$ лемма доказана в (3). Если $f \in H^p$, p < 1, то следует воспользоваться факторизацией f = EB, где $E(z) \in H^p$ и не имеет корней, B(z) — функция Бляшке. Затем к функции $E^p(z) \in H^1$ применить лемму.

Лемма 2 (4). Для
$$\forall g \in H^p\{|z| < 1\}$$

$$|g(z)| \le C||g|| (1 - |z|)^{-1/p}, |z| < 1.$$

Из лемм 1, 2 выводится

Лемма 3. $E c \pi u f \in H^p(0, \infty)$, то

$$|f(z)| \le Cx^{-1/p}||f||, \quad x = \text{Re } z > 0.$$

Лемма 4. *Если ТH*^p $\supset l^p$, то sup Re $\lambda_n < \infty$.

Если бы sup Re $\lambda_n = \infty$, то нашлась бы подпоследовательность $\{\mu_n\}$ последовательности $\{\lambda_n\}$ так, что $\{(\operatorname{Re}\mu_n)^{-1/p}\} \in l^{p/2}$. Тогда по лемме $3 \{f(\mu_n)\} \in l^{p/2}$ для $\forall f \in H^p$. Значит, если $\{c_n\} \in l^p$, но $\{c_n\} \notin l^{p/2}$, то не существует $f \in H^p$ такой, что $f(\mu_n) = c_n$.

 Π е м м а 5. Пусть $\operatorname{Re} \lambda_n > 0$, $\lim \operatorname{Re} \lambda_n = 0$. Тогда существует подпоследовательность $\{\mu_n\}$ последовательности $\{\lambda_n\}$ так, что $\Pi\{f_n(w)\}$ функций, голоморфных и равномерно ограниченных в полуплоскости $\operatorname{Re} w > 0$ и таких, что $f_k(\mu_n) = \delta_{kn}$.

Обозначим через $\{z_n\}$ последовательность прообразов точек $\{\lambda_n\}$ при отображении $w=(1+z)\,(1-z)^{-1}$ круга |z|<1 на полуплоскость $\mathrm{Re}\,w>>0$. Очевидно, $\lim |z_n|=1$. Тогда (3) существует подпоследовательность $\{\zeta_n\}$ последовательности $\{z_n\}$ так, что $|B_n(\zeta_n)|\geqslant \delta>0$ для $\mathrm{V}n$, где $B_n(z)$ — функция Бляшке с корнями $\{\zeta_k\}_{k\neq n}$. Искомой будет последовательность образов функций $(B_n(\zeta_n))^{-1}B_n(z)$ при отображении $w=(1+z)\,(1-z)^{-1}$.

 Π емма 6. Hусть $\operatorname{Re} \lambda_n > 0$ и $\underline{\lim}$ $\operatorname{Re} \lambda_n = 0$. Tогда $\exists f \in H^p$ такая, что $\underline{\lim} |f(\lambda_n)| > 0$.

Пусть $\varphi \in H^p$, $|\varphi(z)| \to \infty$ при $z \to 0$. Существует подпоследовательность $\{\mu_n\}$ последовательности $\{\lambda_n\}$ так, что одновременно выполняются утверждения леммы 5 и $\sum |\varphi(\operatorname{Re} \mu_n)|^{-1} < \infty$. Пусть $\{f_n\}$ — функции из леммы 5; рассмотрим ряд

$$f(z) = \sum \frac{f_n(z) \varphi(z - i \operatorname{Im} \mu_n)}{\varphi(\operatorname{Re} \mu_n)}. \tag{1}$$

Так как $\|\varphi(z-i \text{ Im } \mu_n)\| = \|\varphi(z)\|$, то, благодаря сходимости ряда $\Sigma |\varphi(\text{Re }\mu_n)|^{-1}$ и равномерной ограниченности $|f_n(z)|$, ряд (1) сходится в метрике H^p . В силу полноты H^p , $f \in H^p$. Очевидно, $f(\mu_n) = 1$.

Уместно сравнить лемму 6 со следующим известным (3) свойством классов H^p : $f(z) \to 0$ равномерно при $z \to \infty$, Re $z \ge \delta > 0$.

Из леммы 6 непосредственно следует

Лемма 7. Если $TH^p \subset l^p$, то inf $\text{Re } \lambda_n > 0$.

 Π емма 8. Π усть P — оператор, действующий в H^p по правилу $Pf(z) = \{f(\lambda_n) \ (\text{Re } \lambda_n)^{1/p}\}$. Для того чтобы $PH^p = l^p$, необходимо и достаточно, чтобы

$$\inf_{k} \prod_{n \neq k} \left| \frac{\lambda_k - \lambda_n}{\lambda_k + \bar{\lambda}_n} \right| > 0. \tag{2}$$

Благодаря лемме 1, лемма 8 эквивалентна упоминавшемуся результату об операторе T в пространстве $H^p\{|z| < 1\}$.

До казательство теоремы. Из лемм 4, 7 следует необходимость условия 1°). Теперь соотношения $TH^{p}=l^{p}$ и $PH^{p}=l^{p}$ выполняются одновременно. По лемме 8 имеет место условие (2). В произведении (2) каждый сомножитель не превосходит единицы. Поэтому, если бы inf $|\lambda_{h}-\lambda_{n}|=0$, то и $\inf_{k}\prod_{n\neq k}|\lambda_{k}-\lambda_{n}|\,|\lambda_{k}+\bar{\lambda}_{n}|^{-1}=0$. Необходимость доказана.

Достаточность. Условие 1°) выполняется. По лемме 8 достаточно проверить, что условия теоремы влекут условие (2). Покажем, что выполняется эквивалентное условие

$$\sup_k B_k = \sup_k \sum_{n \neq k} \ln \left| \frac{\lambda_k + \bar{\lambda}_n}{\lambda_k - \bar{\lambda}_n} \right| < \infty.$$

Пусть $a=\inf \operatorname{Re} \lambda_n$, $A=\sup \operatorname{Re} \lambda_n$. При фиксированном k для любого целого m обозначим через P_m прямоугольник $a\leqslant \operatorname{Re} z\leqslant A$, $|\operatorname{Im} z-\operatorname{Im} \lambda_k-m|\leqslant 1/2$. Тогда

$$B_k \leqslant \sum_{\substack{m \\ \lambda_n \in P_m}} \sum_{\substack{\lambda_n \in P_m}} \ln \left| \frac{\lambda_k + \bar{\lambda}_n}{\bar{\lambda}_k - \lambda_n} \right|, \quad n \neq k.$$

Из условия $2^{\mathfrak{o}}$) следует, что число точек λ_n , попавших в P_m , не превосходит некоторого числа N, не зависящего от m. Поэтому

$$\sum_{\lambda_n \in P_0} \ln \left| \frac{\lambda_k + \bar{\lambda}_n}{\lambda_k - \lambda_n} \right| \leq N \ln \frac{1 + 2A}{\delta}, \quad \delta = \inf_{n \neq m} |\lambda_n - \lambda_m|.$$

Далее положим $\lambda_n = \alpha_n + i\beta_n$; получим для $\lambda_n \in P_m$, $m \neq 0$,

$$\ln \left|\frac{\lambda_k + \bar{\lambda}_n}{\lambda_k - \lambda_n}\right| = \frac{1}{2} \ln \left(1 + \frac{4\alpha_n \alpha_k}{(\alpha_n - \alpha_k)^2 + (\beta_n - \beta_k)^2}\right) \leqslant \frac{2A^2}{(\beta_n - \beta_k)^2} \leqslant \frac{2A^2}{(|m| - 1/2)^2}.$$

Теперь

$$B_k \leq N \ln \frac{1+2A}{\delta} + 4NA^2 \sum_{m=1}^{\infty} \frac{1}{(m-1/2)^2}$$
,

значит,

$$\sup_k B_k < \infty.$$

Московский энергетический **и**нститут

Поступило 27 IV 1972

ШИТИРОВАННАЯ ЛИТЕРАТУРА

¹ H. S. Shapiro, A. L. Shields, Am. J. Math., 83, 513 (1961). ² L. Carleson, Am. J. Math., 80, 921 (1958). ³ К. Гофмап, Банаховы пространства аналитических функций, М., 1963. ⁴ Р. L. Duren, Theory of H^p Spaces, N. Y., 1970. ⁵ В. Кабайла, Литовск. матем. сб., 3, 141 (1963).