УДК 541.123.52: 543.422

ФИЗИЧЕСКАЯ ХИМИЯ

г. с. денисов, к. г. тохадзе

КИНЕТИКА ВОДОРОДНОГО ОБМЕНА МЕЖДУ КАРБОКСИЛЬНОЙ ГРУППОЙ КИСЛОТЫ И ТИОГИДРИЛЬНОЙ ГРУППОЙ МЕРКАПТАНА В ГАЗОВОЙ ФАЗЕ

(Представлено академиком Б. Н. Никольским 24 II 1972)

Для изучения межмолекулярного перехода протона в системах, в которых партнеры могут выступать и как доноры, и как акцепторы протона при образовании водородной связи, большую ценность представляют результаты исследования кинетики водородного обмена. Процесс обмена, повидимому, заключается в кооперативном переходе протонов в циклическом комплексе с водородными связями (1, 2), и при построении модели такого элементарного акта целесообразно использовать кинетические данные, полученные в газовой фазе. В этой работе исследована кинетика реакций

 $RCOOD + CU_3SH \rightleftharpoons RCOOH + CH_3SD$

для муравьиной и уксусной кислот в газовой фазе методом и.-к. спектроскопии. Реакция проводилась в стеклянной газовой кювете длиной 20 см с окнами из CaF_2 . По изменению интенсивности полос $\mathbf{v}(\text{OH})$ и $\mathbf{v}(\text{OD})$ изотроных форм кислоты во времени определялась скорость установления равновесного распределения изотопов между группами ОН и SH. В изученном интервале концентраций и температур полупериод реакции менялся от 10 сек. до 30 мин. Скорость водородного обмена, не зависящая от времени, $R \equiv Q/g$ (g — изотопная поправка), вычислялась по (3). Для каждой системы измерялась величина R в зависимости от концентрации одного из компонентов при постоянном содержании другого. При определении порядков реакции α и β по экспериментальным значениям скорости

$R = k[OD]^{\alpha}[SH]^{\beta}$

возникает вопрос об учете димеризации кислоты в газовой фазе. Если в качестве [ОД] использовать концентрацию только мономерных молекул кислоты, которая может быть найдена с помощью известных значений константы мономер-димерного равновесия, то величина а для уксусной кислоты при 25° оказывается равной 3,7, для муравьиной кислоты 3,4. Если же пользоваться концентрацией, определяемой полным числом молекул кислоты в единице объема, то для α получаются значения ~ 2 . Порядок же реакции по меркаптану в близок к единице. Мы полагаем, что в настоящее время целесообразно пользоваться полной концентрацией кислоты, как это делается при обработке результатов в жидкой фазе, полученных методом я.м.р. (4). Во-первых, исследование аналогичной реакции обмена в газовой фазе между метилмеркантаном и весьма слабо ассоциированным метанолом дало для с значение 2 (5). В растворе же в CCl4, когда концентрация метанола меняется в широких пределах, значительное изменение доли мономеров и димеров не влияет на константу скорости и порядки реакции, вычисленные, исходя из полной концентрации спирта (3). Во-вторых, в опытах данной работы не наблюдалось систематического изменения константы скорости при варьировании концентрации в достаточно широком интервале. Наконец, попытка кинетически различить мономеры и димеры в водородном обмене амидов с водой в растворе также оказалось безуспешной (6). В исследованном интервале полных концентраций реагентов для системы муравьиная кислота — меркаптан (0,27- $1.8) \cdot 10^{-3}$ и $(0.27-3.2) \cdot 10^{-3}$ мол/л соответственно и для системы уксусная кислота — меркантан $(0.11-0.97)\cdot 10^{-3}$ и $(0.27-3.2)\cdot 10^{-3}$ мол/п получены следующие значения порядков реакции:

$$\text{HCOOD} + \text{CH}_3\text{SH}, \quad \alpha = 2.1 \pm 0.2 \quad \beta = 0.8 \pm 0.2;$$
 (I)

$$CH_3COOD + CH_3SH$$
, $\alpha = 1.9 \pm 0.1$, $\beta = 0.8 \pm 0.1$. (II)

Так же как и в системе спирт — меркаптан (5), скорость реакции возрастает квадратично с концентрацией гидроксилсодержащего компонента и ли-

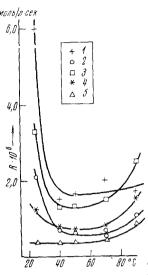


Рис. 1. Зависимость скорости процесса СН₃SH + + CH₃COOD ≈ CH₃SD + + CH₃COOH от темпера-Концентрации туры. кислот и меркаптана (мол/л): I = (0.97) и 2,16) $\cdot 10^{-3}$: 2 = (0.97) и $2.10 \cdot 10^{-3}$: $2 = (0.97 \cdot 0.54) \cdot 10^{-3}$: $3 = (0.97 \cdot 1.08) \cdot 10^{-3}$: $4 = (0.47 \cdot 1.08) \cdot 10^{-3}$: $5 = (0.23 \cdot$ 11 $1.08) \cdot 10^{-3}$

нейно с концентрацией меркаптана. В таком случае можно считать, что мы имеем дело с тримолекулярной реакцией, если процесс протекает гомогенно. При 25° в кинетике обменной реакции метилмеркаптана с муравьиной кислотой не наблюдалось систематических изменений при покрытии стенок кюветы и окон полихлорвиниловой пленкой, при увеличении поверхности окон из Са F2 в три раза и, наконец, при увеличении отношения S/V за счет насыпки из стеклянных трубок в 2,3 и 4,8 раза. Поэтому можно считать, что действительно в наших условиях процесс в основном протекает гомогенно. Значения констант скорости, вычисленные для $\alpha=2$, $\beta=1$ равны $(1.3\pm0.3)\cdot10^4$ и $(0.33\pm0.05)\cdot10^4$ л²/моль·сек для систем (I), (II) соответственно. Константа скорости протонного обмена возрастает с увеличением способности партнеров к образованию Нсвязи как доноров протона от уксусной к муравьиной кислоте. Значения k, полученные для кислот более чем на порядок превышают величину константы скорости обмена в системе метанол — метилмеркаптан в газовой фазе $(0.022 \pm$ $\pm 0,002) \cdot 10^4 \text{ л}^2/\text{моль}^2 \cdot \text{сек}$ (5) в соответствии со значительным увеличением протонодонорной способности группы ОН. Аналогичное возрастание скорости обмена при увеличении протонодонорной способности спиртов и вторичных аминов наблюдается и в растворе в CCl₄, где, в отличие от газовой фазы, кинетика подчиняется бимолекулярному закону.

Скорость водородного обмена была измерена при различных температурах от 5 до 90°. Полученные результаты представлены на рис. 1, 2, из которых, в частности, видно, что скорость реакции уменьшается с температурой. Характер температурного поведения зависит от относительной концентрации реагентов. При малой концентрации кислот повышение температуры от 50 до 90° ведет уже к некоторому увеличению скорости обмена. Анализ концентрационной зависимости скорости обмена при разных температурах, проведенный для системы HCOOD + CH₃SH, показывает, что порядок реакции не остается постоянным: величина α уменьщается от 2.1 ± \pm 0,2 при 10° до 1,8 \pm 0,2 при 50° и далее до 1.3 \pm 0,2 при 90°; величина в при этом остается близкой к единице.

Основные результаты работы можно интерпретировать в рамках предположения о двух стадиях протекания реакции водородного обмена - образования бимолекулярного комплекса с водеродными связями и перехода протонов в этом комплексе при активации его третьей молекулой или в тримолекулярном комплексе, образовавшемся в результате взаимолействия его с третьей молекулой:

$$AH^* + BH + N \stackrel{1}{\underset{2}{\rightleftharpoons}} C + N,$$
 (1) $C + B \stackrel{5}{\underset{6}{\rightleftharpoons}} D + B,$ (3) $C + A \stackrel{3}{\underset{4}{\rightleftharpoons}} D + A,$ (2) $D + N \stackrel{7}{\underset{8}{\rightleftharpoons}} AH + BH^* + N.$ (4)

$$C + A \underset{4}{\overset{3}{\rightleftharpoons}} D + A,$$
 (2) $D + N \underset{\rightleftharpoons}{\overset{7}{\rightleftharpoons}} AH + BH^* + N.$ (4)

Здесь $A = AH^* + AH$; $B = BH^* + BH$; N = A + B; C и D — комплексы с водородной связью до и после акта обмена. Если метка идеальна, то $k_1 = k_8$, $k_2 = k_7$, $k_3 = k_4$, $k_5 = k_6$. Учитывая d[C]/dt = 0, d[D]/dt = 0, что строго верно для реакций водородного обмена, получаем изменение концентрации BH^* со временем:

$$d[BH^*] / dt = k_1[N] ([AH^*][BH] - [AH][BH^*]) \cdot (k_3[A] + k_5[B]) / (2k_3[A] + 2k_5[B] + k_2[N]).$$
(5)

Как известно (7), изменение концентрации меченого соединения во времени в результате реакции $AH^* + BH \rightleftharpoons AH + BH^*$ описывается уравнением $d[BH^*] / dt = R([AH^*][BH] - [AH][BH^*]) / [A][B]$. Поэтому из (5):

$$R = k_1[A][B][N](k_3[A] + k_5[B]) / (2k_3[A] + 2k_5[B] + k_2[N]).$$
 (6)

Так как процессы образования и распада комплексов с водородной связью идут гораздо быстрее процессов протонного обмена в молекулярных комплексах (1), в знаменателе (6) можно считать $2k_3[A] + 2k_5[B] \ll k_2[N]$ п тогда

$$R = \frac{k_1}{k_2} [A] [B] \{ k_3 [A] + k_5 [B] \}.$$
 (7)

Если образование и распад бимолекулярных комплексов (1) и (4) протекает без участия третьей молекулы, то приближение сводится к $2k_3[A] + 2k_5[B] \ll k_2'$.

Из (7) видно, что в зависимости от величины отношения k_5/k_3 наблюдаемая реакция имеет второй порядок по A или B, или имеет место промежуточный случай. Участие молекул A и B в процессах (2) и (3) вряд ли сводится только к передаче энергии комплексу. В процессах взаимодействия возможно образование тримолекулярного комплекса с водородными связями, где, как отмечалось в (8), синхронный переход протонов происходит с меньшей энергией активации, чем в бимолекулярном комплексе. Очевидно, что группа ОН молекулы A образует более прочные связи с комплексом AB, чем группа SH молекулы B, что и приводит к $k_3 > k_5$ и $\Delta E_3 < \Delta E_5$. При 25° скорость реакции обмена зависит квадратично от концентрации кислоты AH, поэтому (7) удобно представить в виде

$$R = \frac{k_1}{k_2} k_3 [A]^2 [B] \left\{ 1 + \frac{k_5}{k_3} \frac{[B]}{[A]} \right\}, \tag{8}$$

где второе слагаемое в скобках должно быть мало по сравнению c единицей, и так как в наших условиях концентрации [A] и [B] отличаются не сильно, можно действительно считать, что $k_3 > k_5$.

Температурная зависимость скорости реакции также согласуется с предположением о стадийном механизме. Если в (8) второй член мал, наблюдаемая константа скорости обмена

$$k_0 = \frac{k_1}{k_2} k_3 = k_0 \exp\left(-\frac{\Delta H + \Delta E_3}{RT}\right), \tag{9}$$

где ΔH —энергия комплекса с водородными связями (ΔH <0), ΔE_3 —энергия активации тримолекулярного процесса (2). В случаях, когда $|\Delta H|$ > ΔE_3 , скорость процесса падает с ростом температуры. Как видно из (8), с ростом температуры вклад второго члена в скобках должен возрастать при ΔE_5 > ΔE_3 . Это ведет к нарушению простой экспоненциальной зависимости $k_9(T)$. Измеряемая константа скорости уменьшается медленнее, чем по экспоненциальному закону и, пройдя через минимум, начинает слабо возрастать при высоких температурах. Вклад второго члена зависит от отношения B/A, и экспериментально определяемые порядки будут меняться с температурой. Таким образом, экспериментально паблюдаемая температурная зависимость скорости обмена может быть связана с протеканием реакции по двум параллельным путям после образования бимоле-

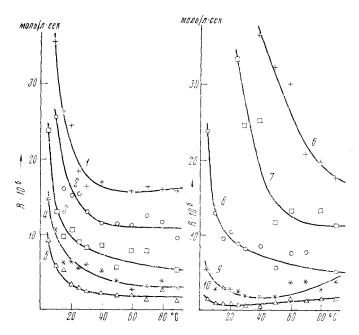


Рис. 2. Зависимость скорости процесса $CH_3SH + DCOOD \Rightarrow CH_3SD + DCOOH$ от температуры и концентрации кислоты и меркаптана (мол/л):

№№ кравых	Концентр. кислоты ×10 ³	Концентр. меркап- тана ×10 ³	крявих Уулу	Концентр. кислоты ×103	Концентр. меркап- тана ×103
1	0,87	3,24 $2,16$ $1,08$ $0,54$ $0,27$	6	1,83	1,08
2	0,87		7	1,35	1,08
3	0,87		8	0,87	1,08
4	0,87		9	0,41	1,08
5	0,87		10	0,21	1,08

кулярного комплекса. Учет температурной зависимости предэкспоненциального фактора в виде $k_0 = k_0' T^n$ (величина n для тримолекулярных реакций, рассчитанная в различных приближениях модели активированного комплекса, составляет $-3 \div -5$) также не позволяет описать экспериментальные данные уравнением типа Аррениуса. Разумеется, температурная зависимость предэкспоненциального множителя может вносить существенный вклад в наблюдаемый температурный ход скорости обменной реакции, если энергия в показателе экспоненты невелика.

Не исключено, что в реальной системе одновременно происходит обмен и по несколько иным механизмам, не учитываемым в предложенной схеме, и полученные кинетические параметры являются в некотором смысле эффективными величинами.

Научно-исследовательский физический институт Ленинградского государственного университета им. А. А. Жданова

Поступило 17 II 1972

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ Г. С. Денисов, Е. В. Рыльцев, Теоретич. эксп. хим., 3, 5, 701 (1967). ² Г. С. Денисов, Э. М. Казакова, Е. В. Рыльцев, Журн. прикл. спектроскоп., 8, 4, 690 (1968). ³ С. Ф. Бурейко, Г. С. Денисов, К. Г. Тохадзе, Кинетика и катализ, 12, 1, 62 (1971). ⁴ М. Риаг, Е. Grunwald, J. Ат. Chem. Soc., 89, 17, 4403 (1967). ⁵ Г. С. Денисов, Е. В. Рыльцев, К. Г. Тохадзе, Вестн. Ленингр. унив., № 1, 92 (1969). ⁶ І. М. Кlotz, В. Н. Frank, J. Ат. Chem. Soc., 87, 12, 2721 (1965). ⁷ С. З. Рогинский, Теоретические основы изотопных методов изучения химических реакций, М., 1956. ⁸ Я. К. Сыркин, ДАН, 105, № 5, 1018 (1955).