УДК 541.138.3:547

ХИМИЯ

Е. А. БЕРДНИКОВ, Р. М. АМИНОВА

ИСПОЛЬЗОВАНИЕ МЕТОДА МОХ ДЛЯ ПРЕДСКАЗАНИЯ ПОЛЯРОГРАФИЧЕСКОГО ПОВЕДЕНИЯ НЕКОТОРЫХ СУЛЬФОХЛОРИДОВ

(Представлено академиком Б. А. Арбузовым 10 VII 1972)

Исследование полярографического поведения галондангидридов алкил(1) и арилсульфокислот (1-6) позволило установить, что самой общей схемой, описывающей механизм восстановления названных веществ на ртутном капельном электроде, является схема, предложенная в работе (1):

$$RSO_2X + 2e \rightarrow RSO_2^{\scriptsize \textcircled{\tiny 2}} + X^{\scriptsize \textcircled{\tiny 2}}.$$

В пастоящей работе приводятся данные по исследованию полярографического поведения α,β-ненасыщенных сульфохлоридов, восстановление которых могло бы включать как расщепление связей сера — хлор или сера — углерод (как отмечалось подобное для α,β-ненасыщенных сульфонов (⁷⁻⁹)), так и насыщение двойной углерод — углеродной связи. Объектами исследования были выбраны винилсульфохлорид, стирилсульфохлорид и как модельные вещества, для которых известен в общих чертах механизм восстановления, фенил- и *п*-толилсульфохлориды. Все изученные сульфохлориды дают по одной хорошо выраженной волие в области концентраций от 9·10⁻⁵ до 9·10⁻⁴ мол/л в водно-спиртовых, водно-диоксановых и диметилформамидных растворах. В качестве фонов использовались сульфат натрия, перхлораты натрия и тетраэтиламмония, серная кислота и *п*-толуолсульфокислота. Максимумы, которые наблюдались на полярограммах сульфохлоридов в водных средах, подавлялись 0,1% раствором желатины.

 $\label{eq:Tadint} {\rm Tad}\ {\rm л}\ {\rm n}\ {\rm q}\ {\rm a}\ {\rm 1}$ Потенциалы полуволны $E_{\rm r_o}$ сульфохлоридов (вольт отн. н.к.э.)

Сульфохлорид ($C=5\cdot 10^{-4}$ мол/л)	H ₂ O : C ₂ H ₅ OH≔ 2:3 фон Na ₂ SO ₄	H ₂ O : диок- сан = 1 : 1 фон Na ₂ SO ₄	H_2O_5 . $C_2H_5OH = $ = 1 : 1 ϕ oH n -CH $_3C_6H_4SO_3H$	ДМФА * фон (C ₂ H ₅) ₄ NClO ₄	n
CH ₂ =CH-SO ₂ Cl C ₆ H ₅ CH=CH-SO ₂ Cl C ₆ H ₅ SO ₂ Cl n-CH ₃ C ₆ H ₄ SO ₂ Cl	$ \begin{array}{ c c c c c c } \hline -0,18 \\ -0,07 \\ -0,05 \\ -0,01 \end{array} $	-0.06 -0.05 -0.08	-0,22 $-0,09$ $-0,20$ $-0,14$	$\begin{array}{c c} -0.16 \\ -0.16 \\ -0.04 \\ \end{array}$	2,14 1,85 2,00 1,92

 $[*] E_{1/2}$ отн. донной ртути.

В табл. 1 приведены E_{γ_2} изученных сульфохлоридов в различных средах. Как видно из данных табл. 1, потенциалы полуволи в значительной степени зависят от растворителя и фона, причем какую-либо закономерность в изменении потенциалов полуволи трудно установить. Необходимо отметить, что на полярограммах изученных сульфохлоридов мы не наблюдали последующих воли (в отличие от данных, приведенных в $\binom{6}{1}$) вплоть до потенциалов разряда фона, кроме воли (в области потенциалов

 $-1.6 \div -1.7$ в), обусловленных восстановлением ионов водорода, возни-

кающих в результате гипролиза сульфохлорилов в волной среде.

О диффузионном характере волн сульфохлоридов говорит совокупность следующих фактов: предельные токи прямо пропорциональны концентрациям деполяризатора, температурный коэффициент в области температур от 10 до 50° С составляет 1,5-2% на 1 градус и предельные токи прямо пропорциональны корню квадратному из высоты столба ртути. Число электронов n, переносимых на молекулу α,β -ненасыщеного сульфохлорида, оценивалось сравнением высот волн исследуемого соединения и фенилсульфохлорида (для которого n=2 (1,6) с учетом различия их молекулярных весов. Найденные таким образом значения n приведены в табл. 1.

В диметилформамидных растворах для изученных сульфохлоридов также наблюдается только одна волна, высота которой не изменяется при добавлении воды или фенола. Этот факт говорит о том, что и в диметилформамидных растворах происходит последовательный перенос двух электронов без образования анион-паликалов.

При полярографировании сульфохлоридов в водно-спиртовой (9:1 по объему) среде на фоне перхлората тетраэтиламмония с помощью скрытых предельных токов по водороду было показано, что процесс восстановления и α,β-ненасыщенных сульфохлоридов протекает без потребления протонов: наблюдается аплитивность предельных токов RSO₂Cl и H[®].

Таким образом, суммируя, можно считать, что α,β-ненасыщенные сульфохлориды на ртутном капельном электроде восстанавливаются по той же обшей схеме, которая предложена и для других сульфохлоридов

$$RCH=CH-SO_2Cl+2e \rightarrow RCH=CHSO_2^{\ominus}+Cl^{\ominus}$$

Чарски и Зуман (10) сопоставили полярографическое поведение некоторых замещенных бензонитрилов с расчетами по методу МОХ. Они считают, что знание квадратов коэффициентов C_i низшей свободной орбитали молекулы (C_i^2) может служить критерием оценки активного центра ее при принятии электрона. Однако величина C_i^2 сильно меняется в зависимости от выбора параметров.

 $N \equiv C \frac{4}{3} \underbrace{\begin{array}{c} 4 \\ 5 \\ 8 \end{array}}_{7} \underbrace{\begin{array}{c} 5 \\ 6 \end{array}}_{7} SO_{2} - NH_{2}$ 1 2 9 10

Таблица 2

i	\mathbf{c}_i^2				C_i^2		
	$\delta_{\dot{N}}=1$	$\delta_{\ddot{N}} = 1.5$	$\delta_{\ddot{\mathbf{N}}} = 2$	i	$\delta_{\ddot{N}} = 1$	$\delta_{\ddot{N}} = 1.5$	$\delta_{\dot{N}} = 2$
1 2 3 4 5	0,0710 0,0009 0,1245 0,0174 0,0705	0,1300 0,0039 0,2101 0,0406 0,0953	0,1417 0,0049 0,2245 0,0462 0,0963	6 7 8 9 10	0,0946 0,0705 0,0174 0,1677 0,3654	0,1856 0,0953 0,0406 0,1382 0,0603	0,2033 0,0963 0,0462 0,1207 0,0196

Мы провели расчет (табл. 2) одной из молекул, рассмотренных в (10), изменив параметр δ_N° согласно (11 , 12), вместо использованного авторами $\delta_N^{\circ} = 1$. Расчеты авторов работы (10) показали, что C_i^2 имеют наибольшие значения (в таблице подчеркнуты) для атомов 9 и 10, на основании чего ими был сделан вывод с восстановительном разрыве связи между этими атомами. Однако из данных табл. 2 видно, что при использовании в расчетах параметр δ_N° со значениями 1,5 или 2,0 с такой же вероятностью можно принять восстановительный разрыв связи в молекуле n-цианбензолсульфамида как между атомами 2—3, так и 6—9. Мы полагаем, что величины C_i^2 могли бы дать достоверную картину лишь в том случае, если в расчетах проводится самосогласование по заряду.

С другой стороны, изменение порядка связей при принятии электрона на молекулу в меньшей степени зависит от выбранных параметров. Наши расчеты для молекулы амида n-цианбензолсульфокислоты с использованием $\delta_N=1$; 1,5 и 2 показали, что независимо от значения параметра δ_N наибольшее относительное уменьшение порядка связи наблюдается только для атомов 9 и 10.

Поскольку порядки связей в меньшей степени зависят от выбранных расчетных параметров, в данной работе мы определяли место разрыва связи, оценивая относительные изменения прочности связей в молекулах сульфохлоридов до и после принятия электрона. В расчетах были использованы параметры из работы (10), для группы SO₂ из (13), Cl — (11), при этом

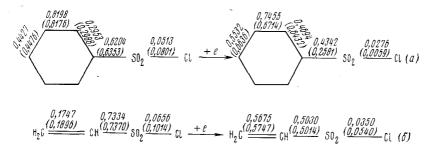


Рис. 1. Порядки связей в молекулах бензолсульфохлорида (a) и винилсульфохлорида (б) до и после принятия электрона, рассчитанные для $\beta_{\text{So}_2-\text{CI}}=0,2$ и $\beta_{\text{So}_2-\text{CI}}=0,3$ (цифры в скобках)

величина резонансного интеграла β_{SO_2-G1} варьировалась от 0,2 до 0,8 с шагом 0,1.

Из наших вычислений следует, что при всех значениях β_{SO2-C1} порядок связи S-Cl всегда намного меньше, чем для других связей, и относительное уменьшение порядка этой связи является наибольшим. Это позволяет сделать вывод о предпочтительном разрыве связи S-Cl, что подтверждается экспериментом. Для примера мы приводим результаты расчетов для молекул бензолсульфохлорида и винилсульфохлорида (рис. 1).

Казанский государственный университет им. В. И. Ульяпова-Ленина

Поступило 4 VII 1972

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ С. Г. Майрановский, М. Б. Нейман, ДАН, 79, 85 (1956). ² L. Horner, H. Nickel, Chem. Ber., 89, 1681 (1956). ³ S. Umano, Nippon Kagaku Zasshi, 77, 796 (1956). ⁴ N. Urabe, K. Yasukochi, J. Electrochem. Soc. Japan, 27, E201 (1959). ⁵ I. Černak, A. Blazej, Chem. Zvesti, 16, 276 (1962). ⁶ M. A. Ковбуз, М. Е. Качанко и др., ЖОХ, 38, 1455 (1968). ⁷ М. М. Ваігет, J. D. Anderson, J. Org. Chem., 30, 3138 (1965). ⁸ Б. А. Арбузов, Е. А. Бердников, ДАН, 171, 860 (1966). ⁹ Б. А. Арбузов, Е. А. Бердников, Тез. докл. VII совещ. электро-химин орг. соед., Казань, 1970, стр. 3. ¹⁰ Р. Čarsky, Р. Zuman, Coll., 34, 497 (1969). ¹¹ Э. Стрейтвизер, Теория молекулярных орбит, М., 1965, стр. 126. ¹² Н. Ковауаshi, J. Chem. Phys., 30, 1373 (1959). ¹³ R. Gerdil, E. Lucken, Mol. Phys., 9, 529 (1965).