УДК 541.124 <u>ХИМИЯ</u>

Д. А. БОЧВАР, Е. Г. ГАЛЬПЕРН

О ГИПОТЕТИЧЕСКИХ СИСТЕМАХ: КАРБОДОДЕКАЭДРЕ, *-ИКОСАЭДРАНЕ И КАРБО-*-ИКОСАЭДРЕ

(Представлено академиком А. Н. Несмеяновым 26 VI 1972)

Среди полиэдрических алициклических углеводородов (синтезированных или гипотетических) выделяется своей почти абсолютной непапряженной системой связей додекаэдран. Это гипотетический углеводород $C_{20}H_{20}$, углеродные атомы которого расположены в вершинах правильного многогранника (додекаэдра), имеющего 12 граней, 20 вершин, 30 ребер (рпс. 1a). Все валентные углы C-C-C и C-C-H почти не отличаются от тетраэдрических и равны соответственно 108° и $110^\circ 54''$. Можно с полным оспованием считать, что атомы углерода в таком углеводороде находятся в sp^3 -гибридном состоянии. Будем называть 20 гибридных орбиталей, направленных по радпусам описанной сферы, проходящей через все вершины додекаэдра, ρ -системой, а остальные 60, направленные под углом $110^\circ 54'$ к радиусу, τ -системой додекаэдрана. Рассматриваемая система содер-

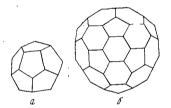


Рис. 1. а — додекаэдр, б — sикосаэдр

жит 100 валентных электронов и 50 связей, очевидно, ковалентных, двухцентровых.

Из всего сказанного следует, что теоретически молекула додекаэдрана должна быть настолько ненапряженной пасыщенной системой, что вопрос о возможности ее существования не вызывает сомнений. В настоящее время предпринята понытка спитеза такой системы и сообщается о получении фрагмента додекаэдрана, содержащего шесть конденсированных иятичленных колец (1). Как изве-

стно, наряду с пятью правильными многогранниками существуют 14 полуправильных (многогранники Архимеда) (2) *. У полуправильных многогранников все многогранные углы равпы, а грани представляют собой правильные, но не обязательно одинаковые многоугольники. Класс соединений с атомами, расположенными в вершипах таких многогранников, оставался до сих пор впе поля зрения химиков.

Среди многогранников Архимеда особенно интересен своей «близостью» к сфере усеченный икосаэдр (рис. 16), который мы будем называть s-икосаэдром. Этот многогранник образован 12 пятиугольниками и 20 шестиугольниками. У него 60 вершин и 90 ребер. Можно представить себе гипотетический алициклический углеводород s-икосаэдран с атомами углеводорода расположенными в вершинах s-икосаэдра ($C_{60}H_{60}$). У такого углеводорода все углы H-C-C равны $101^\circ38'25''$, углы C-C-C равны 120 и 180° (в шести- и пятиугольниках соответственно). Удобно считать, что в такой системе состояние атома углерода близко к sp^2 -гибридному состоянию. Пусть чистые p-орбитали направлены по радиусу описанной сферы, проходящей через все вершины s-икосаэдра (p-система), а плоскость гибридных sp^2 -орбиталей (τ) касается этой сферы (рис. 2), причем одна из sp^2 -орбиталей

^{*} Помимо двух серий призм.

 (τ_i) направлена по проекции ребра между шестиугольниками на плоскость τ , направления двух других $(\tau_i'$ и $\tau_i'')$ составляют небольшой угол α с проекциями сторон пятиугольников $(\tau$ -система). Очевидно, что все связи, образующие τ -скелет s-икосаэдрана, должны быть «банановыми».

Расстояние между соседними атомами водорода при длине связи С—С, равной 1,54 Å, составляет 2,31 Å у додекаэдрана и 1,98 Å у *s*-икосаэдрана (у метана 1,78 Å). Из всего сказанного следует, что *s*-икосаэдран несколь-

ко более напряжен, чем додека-

эдран.

Особый интерес представляют, однако, чисто углеродные ненасыщенные системы C_{20} и C_{60} , соответствующие насыщенным углеводородам — додекаэдрану и *s*-икосаэдрану. Эти углеродные полиэдрические системы могут быть названы: карбододекаэдр и карбо-*s*-икосаэдр. Системы тангенциальных связей в молекулах C_{20} и C_{60} аналогичны τ -системам додекаэдрана и *s*-икосаэдрана. А ρ -электроны об-

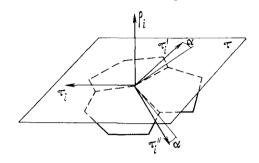
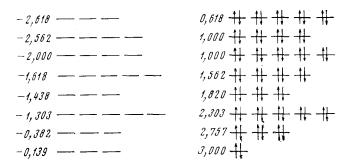


Рис. 2. Расположение орбиталей, принадлежащих i-му атому s-икосаэдрана

разуют связи, которые можно рассматривать, как аналоги π -связей, существующих в сопряженных системах.

Нами произведен расчет карбододекаэдра в р-приближении по схеме метода Хюккеля.


Этот расчет может рассматриваться лишь как грубое упрощение, поскольку предполагаемая им «отделимость» ρ -электронной системы от τ -системы недостаточно обоснована: интегралы перекрывания $s(\rho_i \rho_i)$ - и $s(\rho_i \tau_i)$ - орбиталей, принадлежащих соседним атомам i и j (орбиталь τ_i направлена на i-й атом), равны соответственно 0,16 и 0,13, τ . е. отличаются слишком мало. Схема уровней, полученная в результате этого расчета, имеет вид (β -резонансный интеграл):

Таким образом, расчет карбододекаэдра в р-приближении приводит к выводу о триплетности основного состояния этой молекулы.

При попытке упрощенного описания ρ -электронной оболочки карбододекаэдра, с точки зрения концепции резонанса структур, с привлечением только ковалентных структур без формальных связей (6 равноценных структур с 10 двойными связями, см. рис. 3) следует вывод о синглетности основного состояния этой молекулы. Однако поскольку этот вывод заложен в предпосылках самого подхода, отнюдь не исключено, что сравнительный расчет нижнего синглетного и пижнего триплетного состояний карбододекаэдра в рамках метода валентных связей привел бы к более низкому значению энергии для триплетного состояния.

В настоящее время нами проводится расчет молскулы карбододекаэдра расширенным методом Хюккеля с целью дальнейшего исследования вопроса о характере основного состояния. Все же можно заметить, что т-электронная система карбододекаэдра представляется настолько устойчивой, что введение ее в расчет, вполне возможно, и не изменит качественно характер схемы уровней энергии о-электронной системы.

В противоположность карбододекаэдру расчет ρ-системы карбо-s-икосаэдра показал замкнутость ρ-оболочки. Схема уровней энергий карбо-s-икосаэдра (энергия выражена в единицах β, где β — резонансный интеграл; за нуль энергии принята величина кулоновского интервала а) имеет вид

о-энергия на один электрон равна 1,55β.

Порядок * связей смежных для шестичленных циклов равен 0,60, а связей в пятичленных циклах -0,48.

Применение ρ -приближения в этом случае более оправдано, поскольку интеграл перекрывания $s(\rho_i\rho_i)=0.32$ в два раза больше, чем интеграл $s(\rho_i\tau_i)=0.16$, а ближайшее окружение каждого углеродного атома значительно более «плоско», чем у карбододекаэдра.

В случае карбо-s-икосаэдра вывод о характере основного состояния, полученный из МО-расчета в о-приближении, согласуется с выводом, достав-

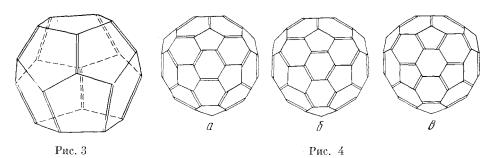


Рис. 3. Ковалентная резонансная структура карбододекаэдра

Рис. 4. Ковалентные резонансные структуры карбо-s-икосаэдра: (a) с осью пятого порядка (одна структура), б и в с осью третьего порядка (по 10 равноценных структур). Все структуры с 30 дойными связями

ляемым теорией резонанса. Основные резонансные структуры карбо-s-икосаэдра представлены на (рис. 4). Как следует из приведенных выше порядков связей, основной вклад дает ковалентная резонансная структура (a). Видимо карбо-s-икосаэдр должен быть более устойчив, чем карбодо-декаэдр.

В заключение авторы выражают глубокую признательность Н. П. Гамбарян и И. В. Станкевичу за плодотворную дискуссию.

Институт элементоорганических соединений Академии паук СССР Москва Поступило 30 V 1972

ШИТИРОВАННАЯ ЛИТЕРАТУРА

¹ Р. Е. Eaton, R. H. Mueller, J. Am. Chem. Soc., **94**, 1014 (1972). ² Л. А. Люстерник, Выпуклые фигуры и многогранники, М., 1956.

^{*} Расчет порядков связей произведен О. Б. Томилиным по составленной им программе.