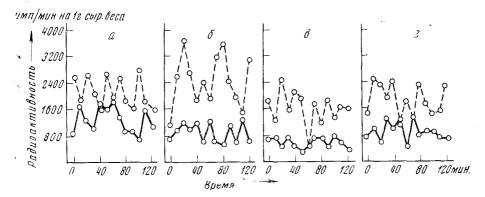
УДК 576.34:591.431.6

*ПИТОЛОГИЯ* 

## В. Я. БРОЛСКИЙ, Н. В. НЕЧАЕВА

## СОХРАНЕНИЕ УСВОЕННОГО В ЭКСПЕРИМЕНТЕ РИТМА СИНТЕЗА БЕЛКА ПРИ ДЕЙСТВИИ НА КЛЕТКИ АКТИНОМИЦИНА D

(Представлено академиком Б. Л. Астауровым 17 VII 1972)


В предыдущих наших исследованиях был обнаружен эндогенный ритм количественных изменений белков в ацинарных клетках околоушной слюнной железы крысы (1-3). Ему соответствовал ритм синтеза белка в тех же клетках (3, 4). Выяснилось также, что период этого ритма может быть изменен путем периодических воздействий на железу с частотой, отличной от естественной, синхронизирующей ритм у отдельных животных (2). В наших опытах это достигалось регулярными кормлениями крыс: синхронизирующими природный ритм были трехчасовые промежутки между кормлениями, тогда как после тренировки с двухчасовыми промежутками период ритма уменьшался. Было показано, что новая периодичность какоето время сохраняется у животных после прекращения тренировки.

В настоящей работе выясняется возможность сохранения навязанного в эксперименте на крысах ритма спитеза клеточных белков в органной культуре околоушной железы. Другой задачей было исследование дейст-

вия актиномиципа D на ритм синтеза белка.

Крыс линии Вистар — самцов весом 120—150 г после 24-часового голопания кормили с двухчасовыми промежутками. Через 2,5 дня, т.е. после 30 сочетаний животных деканитировали, после чего быстро выделяли кусочки околоушной железы весом от 3 до 5 мг. Выделенные взвешенные кусочки измельчались до получения еще более мелких кусочков размером  $1\times0.5\times0.5\,$  мм $^3$  и помещались на мембраиные фильтры HUFS в среду 199, к которой добавлялось 20% сыворотки крупного рогатого скота, 70 µг витамина С и 4 мг глюкозы на 1 мл среды. Культивирование ткани на мембранных фильтрах проводилось в чашках Конвея. Детали методики культивпрования околоушной слюшной железы были описаны ранее (5). Интенсивность синтеза белка оценивали по включению Н<sup>3</sup>-лизина (фирма «Amersham», удельная активность 20 Сі/ммоль, доза 10 µС на 1 мл среды) в белки железы после 15-минутной инкубации ткани с изотоном в среде 199 без немеченого лизина. Радиоактивность измеряли с помощью сцинтилляционного счетчика SL-30 (эффективность счета составляла 25%). Лля этого кусочки околоушной железы промывали средой 199 с избытком немеченого лизина, затем отмывали холодной 5% ТХУ и гидролизовали 5% TXУ при 90° в течение 20 мнп. с целью удаления нуклепновых кислот. Напосалочную жилкость сливали, а осалок промывали 70% этанолом, задивали гнамином до полного растворения осадка, добавляли толуоловый сцинтиллятор и определяли радиоактивность. Радиоактивность пересчитывали на 1 г сырой ткани. Специфичность включения Н<sup>3</sup>-лизина в белки проверяли добавлением в среду ингибиторов спитеза белка — пуромицина (доза 100 µг/мл, фирма «Serva», Heidelberg) и актидиона (доза 50 µг/мл, «Serva»). Через 5 мын. после введения в среду ингибитора включение Н<sup>3</sup>-лизина в ткань железы снижалось примерно в 10 раз (табл. 1). Следовательно, Н3-лизии включается, преимущественно, если не исключительно, в белки железистых клеток. В течение 15-минутной никубации с Н<sup>3</sup>-лизином новообразованный белок не успевает выделиться из клетки (4), т. е. радиоактивность характеризует интенсивность синтеза белка.

Исследования синтеза белка проводились таким образом, что полный 2-часовой цикл изменений (промежуток между кормлениями при тренировке) определялся изучением кусочков железы одной и той же крысы. Часть кусочков инкубировали в нормальной среде 199, другую часть кусочков железы того же животного инкубировали в той же среде с добавлением актиномицина D (фирма «Serva», Heidelberg). Для выяснения



воспроизводимости измерений была определена радиоактивность кусочков одной и той же железы в одном фиксированном се состоянии. Отличия вариантов от среднего были в несколько раз ниже полуамплитуды колебаний радиоактивности в изучениом ритме.

Таблица 1 Влияние ингибиторов синтеза белка на специфичность включения Н<sup>3</sup>-лизина в белки околоунной железы in vitro

| Варианты опыта                                                                                                | Вес ку-<br>сочка<br>ткани,<br>ме | Эффективная<br>радиоактивность,<br>имп/мин | Удельная * радиоактив- ность, имп/мин |
|---------------------------------------------------------------------------------------------------------------|----------------------------------|--------------------------------------------|---------------------------------------|
| Ипкубация с Н <sup>3</sup> -лизипом<br>Без ипкубации с изотопом<br>Ипкубация с ипгибиторами белкового спнтеза | 5,80<br>3,95                     | 5458<br>85                                 | 919<br>22                             |
| п Н³-лизилом<br>Пуромиции **<br>Актидион                                                                      | 4,2<br>5,1<br>4,0<br>4,5         | 452<br>614<br>700<br>675                   | 76<br>98<br>143<br>128                |

<sup>\*</sup> Радиоактивность на 1 г сырого веса железы (с учетом фона).
\*\* Радиоактивность измерялась у животного под действием каждого из ингибиторов белкового синтеза дважды.

Через 14—16 час. после эксплантации в кусочках околоушной железы обнаружен достаточно интепсивный синтез белка (рис. 1). Изменения радиоактивности имеют периодический характер. Колебания не строго регулярны, что, по-видимому, обусловлено, как сложным характером процесса, так и погрешностями анализа. Однако средний период достаточно четко отличается от периодичности природного ритма. В случае навязанного в эксперименте ритма средний период колебаний интенсивности син-

теза белка равен 30—40 мин. (рис. 1) так же, как при исследовании этого ритма in vivo (2, 3). Природный ритм характеризуется 50—60-минутным периодом (2, 3). Следовательно, клетки помнят навязанный ритм работы и воспроизводят его какое-то время (в данном случае через 14—16 час. автоматически). Эти опыты показывают возможность следовых явлений, клеточной памяти, в кинетике синтеза белка.

Одновременно на том же материале изучался один из возможных путей регуляции усвоенного клетками ритма. Выясняли, необходим ли для сохранения ритма постоянный приток РНК. Предварительно определили,

Таблица: Влияние разных концептраций актиномицина D на включение Н<sup>3</sup>-уридина в околоушную железу крысы in vitro (по данным двух опытов)

| Варианты опыта                                                                                                                                                        | Концентрация актиномицина D, | Вес к <b>ус</b> очка<br>ткани, <b>м</b> г                     | Эффектив-<br>ная радио-<br>актив-<br>ность,<br>имп/мин | Удельная радиоактивность, имп/мин на 1 мг ткани |                          |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|---------------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------|--------------------------|
|                                                                                                                                                                       |                              |                                                               |                                                        | полная                                          | минус фон                |
| Культивирование без актиноми-<br>цина плюс инкубация с Н <sup>3</sup> -ури-                                                                                           | _                            | 3,65; 2,51                                                    | 861; 1264                                              | 236; 504                                        | 220; 359                 |
| дином * Культивирование с актиномици- ном плюс инкубация с Н <sup>3</sup> -уриди- ном Культивирование без актиноми- цина и без инкубации с Н <sup>3</sup> -ури- дином | 3 5                          | 3,37—<br>3,45; 2,52<br>2,95; 3,21<br>3,00; 2,65<br>4,30; 2,85 | 204—<br>162; 367<br>214; 673<br>50; 391<br>70; 143     | 60—<br>47; 146<br>72; 210<br>17; 147<br>16; 143 | 44; —<br>31; 1<br>56, 65 |

<sup>\*</sup> Время инкубации с Н<sup>3</sup>-уридином во всех опытах 10 мин.; использованная доза 10 РС/мл.

что при пятикратном изменении дозы актиномицина D (1-5  $\mu$ г/мд) степень торможения включения  $H^3$ -уридина в ткань околоушной железы не изменяется (табл. 2). В изученном случае  $H^3$ -уридин включается заведомо только в РНК: клетки околоушной железы взрослой крысы практически не синтезируют ДНК. Известно, что низкие дозы актиномицина D тормозят синтез рибосомной РНК, более высокие дозы всех форм РНК ( $^{8-9}$ ). Характер включения  $H^3$ -уридина в РНК железистых клеток, длительно, в течение 12-14 час. обработанных актиномицином D таков, что в этом случае можно говорить о почти полном синтезе РНК всеми использованными дозами ингибитора. В дальнейших исследованиях брали  $3\mu$ г/мл актинемицина D — дозу, которая блокировала синтез всех форм РНК и в других культурах ( $^7$ ,  $^9$ ).

Блокирование синтеза РНК не прекращает синтеза белка (рис. 1), хотя существенно снижает его интенсивность. Подобный эффект актиномицина D был описан и ранее (10-13). В такой же дозе на других клетках актиномицин D тормозил синтез РНК через 2—4 часа (8, 9). В наших опытах клетки находились в среде с ингибитором 12 час. и более, т. е. транскрипция была нарушена примерно в течение 10—12 час. Интересно, что синтез белка на долгоживущих матрицах и рибосомах продолжался в том же навязанном ритме, как и в клетках железы того же животного, не обработанных актиномицином D. В обоих случаях средний период колебаний радиоактивности белков был 30—40 мин., что соответствует периодичности количественных изменений белков в железистых клетках животных, тренированных 2-часовыми воздействиями (2).

Таким образом, в органной культуре околоупной железы сохраняется ритм синтеза белков клетки, названный в эксперименте. Усвоенный клетками ритм не требует для своей реализации постоянного притока РНК. Это наблюдение делает сомнительной ядерную регуляцию клеточной памяти

в изученном нами случае. В дальнейшем, видимо, целесообразно исследовать регуляцию усвоенного ритма на уровне трансляции, мембранных процессов и других преимущественно цитоплазматических функций. Перспективно выяснение механизмов кооперативного функционирования клеток, что может дать новые сведения о приспособительных реакциях тканей в постнатальном онтогенезе.

Институт биологии развития Академии наук СССР Москва Поступило 14 VII 1972

## ЦИТИРОВАННАЯ ЛИТЕРАТУРА

<sup>1</sup> В. Я. Бродский, Н. В. Нечаева, Цитология, 13, 2, 221 (1971). <sup>2</sup> В. Я. Бродский, Н. В. Нечаева, В. И. Прилуцкий, Цитология, 15, 2, 177 (1973). <sup>3</sup> Н. В. Нечаева, В. И. Фатеева, Бюлл. эксп. биол. и мед., 75, 1, 66 (1973). <sup>4</sup> Н. В. Нечаева, В. Я. Бродский, Цитология, 15, 1, 52 (1973). <sup>5</sup> Н. В. Нечаева, Т. Б. Айзенштадт, Е. А. Лурия, Цитология, 12, 2, 4, 466 (1970). <sup>6</sup> М. И. Лерман, В. Л. Мантьева, Г. П. Георгиев, ДАН, 152, 3, 744 (1963). <sup>7</sup> R. P. Perry, Exp. Cell Res., 29, 3, 400 (1963). <sup>8</sup> А. В. Ricinson, P. P. Dendy, Experientia, 25, 12, 1251 (1969). <sup>9</sup> И. Н. Смоленская, Т. П. Мазнина, Цитология, 13, 11, 1347 (1971). <sup>10</sup> S. А. Агшентгоиt, R. D. Schmickel, S. L. Simmons, Arch. Biochem. and Biophys., 112, 2, 304 (1965). <sup>11</sup> М. Grabowska, Bull de l'acad. Polon Sci. (Ser. Sci. biol.), 13, 5, 265 (1965). <sup>12</sup> К. Г. Газарян, А. С. Кульминская, ДАН, 166, № 2, 462 (1966). <sup>13</sup> N. Н. Marsh, P. J. Fitzgerald, Am. J. Pathol., 64, 2, 357 (1971).