УДК 543.42+547.918

ХИМИЯ

Таблица 1

А. К. ДЗИЗЕНКО, В. В. ИСАКОВ, Н. И. УВАРОВА, Г. И. ОШИТОК, член-корреспоидент АН СССР Г. Б. ЕЛЯКОВ

СПЕКТРЫ Я.М.Р.-Н¹ АЦЕТИЛИРОВАННЫХ СТЕРОИДНЫХ ТРИТЕРПЕНОВЫХ ГЛИКОЗИДОВ

В настоящее время благодаря успешному применению метода я.м.р.- H^1 ири исследовании моно- и олигосахаридов ($^{1-3}$) спектры я.м.р.- H^1 могут поволить решать вопросы конфигурации гликозидной связи, строения углеводного компонента в гликозидах и взаимного влияния углеводной цени и агликона. Имеющиеся в литературе сведения в основном ограничены работами по исследованию сигнала аномерного протона в гликозидах с одним моносахаридным остатком ($^{4-6}$).

В этой работе изучены спектры я.м.р.-Н¹ ацетилированных глюкозидов и мальтозидов некоторых стереидов и тритериенов с целью установления конфигурации гликозидной связи и выявления закономерностей в поведении сигналов протонов углеводных колец и агликона. Соединения синтезированы на основе ортоэфирного метода гликозилирования (7, 8).

Анализ спектров ацетилированных глюкопиранозидов (табл. 1) холестерина (I), β-ситостерина (II) показывает, что сигнал протона при гликозидном углеродном атоме моносахаридного кольца (H-1) имеет химиче-

Химические сдвиги (δ) и константы спин-спинового взаимодействия (гц) сигналов кольцевых протонов в спектрах ацетилированных стероидных и тритерпеновых гликозидов

Соединение	Кольцо	Протоны						
		H-1	H- 2	H-3	H-4	H -5	H-6	H-6'
I. β-D-глюкопи- ранозид холе-	A	4,60 (8,0)	4,97 (8,0; 8,5)	5,24 * —	5,06 *	3,66	4,27 (12,5; 5,1)	4,13 (12,5; 1,8)
стерина II. β- <i>D</i> -глюкопи- ранозид β-си-	A	4,59 (7,9)	4.93 (7,9; 8,5)	5,21 * -	5,06 *	3,68 —	4,27 (12,5; 5,1)	4,13 (12,5; 1,8)
тостерина III. β-D-глюкопира- нозид бетулина по С-3	A	4,52 (7,8)	5,01 * —	5,21 * —	5,09 * —	3,67	4,27 (12,5; 5,1)	4,13 (12,5; 1,8)
IV. 8- <i>D</i> -глюкопи- ранозид бету- лина по C -28	В	4,45 (7,9)	5,00 *	5,25 * —	5,07 * —	3,68 —	4,27 (12,5; 5,1)	4,13 (12,5; 1,8)
V. Бис-о-глюнопи- ранозид бету- лина	A B	4,52 (7,8) 4,45	5,01 * 5,00 *	5,21 * 5,21 *	5,09,* 5,09 *	3,67 3,68	-	<u> </u>
VI. а-D-Глюкопи- ранозид холе-	A	(7,9) 5,24 (3,5)	4,81 (3,5; 10,0)	5,50 (10,0; 9,5)	5,04 (9,5; 9,5)	3,70-4,40	3,70-4,40	3,70-4,40
стерина VII. Мальтозид хо- лестерина	A	4,60 (8,0) 5,40	4,80 (8,0; 8,5) 4,84	5,24 (8,5; 9,0) 5,36	3,99 (9,0; —) 4,0	3,65 - 3,70-4,40	3,70-4,40 - 3,70-4,40	3,70-4,40 - 3,70-4,40
VIII. Мальтозид β-ситостерина	A		(4,0; 10,2) 4,81 (7,9; 8,7) 4,83	(10,2; 9,5) 5,24 (8,7; 9,5) 5,35	(9,5; 9,5) 4,00 (9,0; —) 5,02	3,65 3,70—1,40	3,70-4,40 3,70-4,40	3,70-4,40 3,70-4,40
IX. Мальтозид бе- тулина по C-3	A A ₁	$ \begin{array}{c c} (1,0) \\ 4,55 \\ (7,9) \\ 5,40 \end{array} $	(4,0; 10,0) 4,85 (7,9; 8,5) 4,84	(10,0; 9,5) 5,25 (8,5; 9,1) 5,36	$ \begin{array}{c c} (9,5; 9,5) \\ 4,04 \\ (9,1; -) \\ 5,02 \end{array} $	3,70-4,40 3,70-4,40	3,70-4,40	3,70-4,40
X. Мальтозид бе- тулина по C-28	A	(3,9)	(3,9; 10,0) 4,82 (7,8; 8,3) 4,84	(10,0; 9,5) 5,26 (8,3; 9,5) 5,38 (10,0; 9,5)	(9,5; 9,5) 4,04 (9,5; —) 5,03	3,69 3,70-4,40	3,70-4,40	3,70-4,40

^{*} В случае АВХУ — приближение не правомерно.

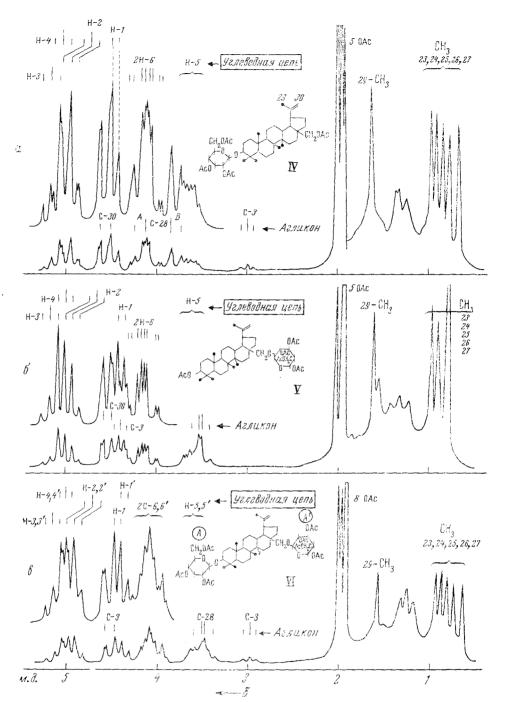


Рис. 1. Спектры я.м.р.-Н 1 (100 мгд) ацетилированных глюковидов бетулина в CDCl $_3$: β -D-глюкопиранозид бетулина по C-3 (a), по C-28 (δ), бис- $(\beta$ -D-глюкопиранозид) бетулина (θ)

ский сдвиг $\delta=4,60$ м.д. $(J_{1,\;2}=7,9$ гц), а в случае глюкопиранозидов бетулина (рис. 1) по C-3 (III) и C-28 (IV) имеет меньший химический сдвиг: $\delta=4.52$ м.д. $(J_{1,\;2}=7,8$ гц) и $\delta=4,45$ м.д. $(J_{1,\;2}=7,9$ гц) соответственно. В спектре (рис. 1) бис-о-глюкопиранозида бетулина (V) наблюдаются оба дублета, позволяющие говорить о месте привязки глюкопиранозных колец.

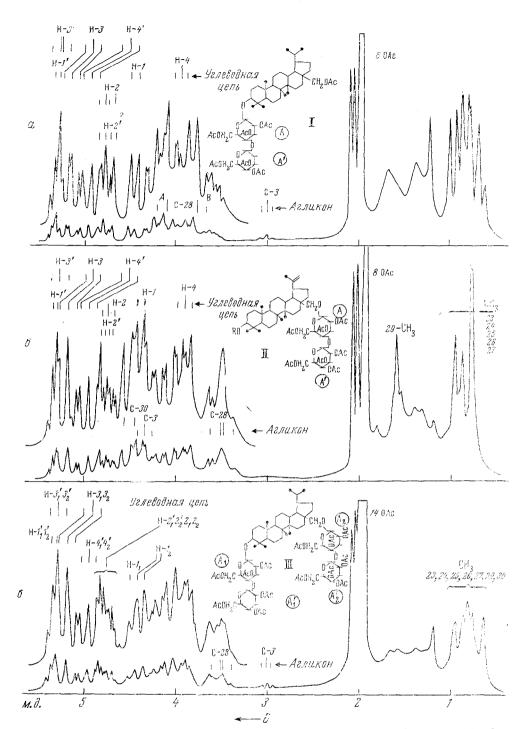


Рис. 2. Спектры я.м.р.-Н 1 (100 мгц) ацетилированных мальтозидов бетулина в CDCI $_3$: β -D-мальтозид бетулина по C-3 (a), по C-28 (δ), бис-(β -D-мальтозид) бетулина (ϵ)

Сигнал протона H-2 во всех случаях имеет триплетный характер ($J_{2,4}\sim J_{2,3}\simeq 8$ гд) при $\delta=4,95-5,05$ м.д., а для протонов H-3 и H-5 наблюдаются величины химических сдвигов (табл. 1), характерные для β -гликозидных связей в октавцетатах дисахаридов (3). Протопы H-6, H-6′ образуют AB-часть ABX-системы ($\Delta\delta_{\rm AB}=0,14$ м.д., $J_{\rm AB}=12,5$ гц, $J_{\rm AM}=$

= 5,1 гц, $J_{\rm Bx}=4,8$ гц). Все эти данные указывают на β -конфигурацию гликозидной связи в рассмотренных соединениях. Для соединения с α -гликозидной связью — тетраацетат- α -D-гликопиранозид-холестерина (VI) сигнал протона H-2 проявляется квартетом ($J_{2,4}=3,5$ гц, $J_{2,3}=10,0$ гц) и имеет меньший химический сдвиг ($\Delta\delta=0,16$ м.д.), чем в случае β -гликозидной связи. При этом сигнал протона H-3 смещается в слабое поле на $\Delta\delta=0,25$ м.д. за счет 1,3-диаксиального дезэкранирующего эффекта гликозидной связи.

Принимая во внимание результаты полученные выше, нами были изучены спектры (табл. 1) ацетилированных мальтозидов холестерина (VII), β -ситостерина (VIII) и бетулина (рис. 2) по C-3 (IX), C-28 (X), бис-омальтозида (XI). В этом случае необходимо различать сигналы протонов колец А и A_1 (А — моносахаридное кольцо, связанное с агликоном, A_1 — следующее кольцо моносахаридной цепи). Протон H-1 кольца А дает дублетный сигнал ($J_{1,2} \simeq 8$ гц) и имеет δ 4,59—4,60 м.д. в случае мальтозидов стероидов, а для мальтозидов бетулина (рис. 2) в зависимости от места положения δ = 4,55 м.д. (C-3) и δ = 4,45 (C-28). В спектре био-о-мальтозида бетулина (рис. 2) в спектре наблюдаются оба дублета.

Дополнительное моносахаридное кольцо A_1 за счет 2,4-аксиально-экваториального взаимодействия приводит к сдвигу сигнала протона H-2 кольца A в сильное поле на $\Delta \delta = 0,15$ м.д. по сравнению с его положением в глюкопиранозидах. Химические сдвиги протонов H-3 и H-5 кольца A (табл. 1) также указывают на β -конфигурацию гликозидной связи кольца A с агликоном в соединениях (VII—XI). На α -конфигурацию гликозидной связи между моносахаридными остатками указывают сигналы протонов H-1 ($\delta = 5,40$ м.д., $J_{1,2} = 4,0$ гд) и H-2 ($\delta = 4,83$ м.д., $J_{2,1} = 4,0$ гц. $J_{2,3} = 10.0$ гц) кольца A_1 .

Анализ сигналов протонов агликона показывает, что замена гидроксильной группы при С-3 на углеводный компонент в бетулине ведет к изменению величин химических сдвигов сигналов С-23, С-24, С-25 метильных групп. Замена гидроксильной группы при С-28 в бетулине на углеводный компонент меняет характер сигналов метиленовой группы: если в первом случае сигналы метиленовой группы образуют четкую AB-систему ($J_{AB}=10.8$ гц, $\Delta\delta_{AB}=0.40$ м.д.), то во втором близкую к A_2 ($J_{AB}=10.5$ гц, $\Delta\delta_{AB}=0.08$ гц).

Таким образом, данные спектроскопии я.м.р.-Н указывают на стереоспецифичность ортоэфирного метода, приводящего к синтезу только β-аномеров. Установленные закономерности в спектрах, помимо определения конфигурации гликозидной связи, позволяют говорить о месте присоединения углеводного компонента в гликозидах.

Институт биологически активных веществ Дальневосточного научного центра Академии наук СССР Владивосток

Поступило 27 IV 1972

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ R. V. Lemieux, J. D. Stevens, Canad. J. Chem., 43, 2059 (1965). ² W. W. Binkley, D. Horton, N. S. Bhacca, Carbohydr. Res., 10, 245 (1969). ³ M. Matsui, M. Okada, Chem. Pharm. Bull., 19, 365 (1971). ⁴ J. Tsuruki, K. Tanaka, Bull. Chem. Soc. (Japan), 40, 1208 (1967). ⁵ R. Goutrel, Kémiai Közlemenyek, 34, 155 (1970). ⁶ R. B. Conrow, S. Bernstein, T. Org. Chem., 7, 863 (1971). ⁷ H. H. Уварова, Г. И. Ошиток и др., Жури. прикл. спектроскоп., 6, 842 (1971). ⁸ H. H. Уварова, Г. И. Ошиток и др., ДАН, 202, 2, 368 (1972).