УЛК 551.352

ОКЕАНОЛОГИЯ

Е. М. ЕМЕЛЬЯНОВ, И. И. ШУРКО

ЖЕЛЕЗО В ОСАДКАХ АТЛАНТИЧЕСКОГО ОКЕАНА

(Представлено академиком Л. М. Бреховских 16 VI 1971)

На основании детального анализа 825 проб верхнего слоя (0-5 см) донных осадков Атлантического океана авторами под редакцией А. П. Лисицына была составлена карта распределения железа в масштабе 1:20 млн $\binom{1}{2}$ и рассчитаны средние содержания этого элемента в различных вещественно-генетических и гранулометрических типах отложений (табл. 1).

Основой для составления карты и расчетов послужили данные, собранные в советских экспедициях на судах «Академик Курчатов», «Петр Лебедев», «Михаил Ломоносов», «Обь» и рыболовных судах Атлантического отделения Всесоюзного научно-исследовательского института рыбного хозяйства и океанографии. Всего было собрано и изучено 593 пробы *. Кроме того, были использованы ранее опубликованные данные (3-5) и некоторых других авторов, всего 232 пробы. Наиболее густой сетью наблюдений покрыты Северная и Экваториальная Атлантика, шельфы Западной Африки и Южной Америки; редкой сетью — Южно-Атлантический хребет, Аргентинская и Капская котловины; почти совершенно не изученными остались Мексиканский залив и приантарктический сектор Атлантики (2):

Железо по площади дна океана распределено довольно неравномерно (см. рис. 1). Эта неравномерность обусловлена неодинаковым содержанием элемента в различных вещественно-генетических и гранулометрических типах осадков (см. табл. 1) и особенностями их распределения в пространстве. Максимальные содержания Fe установлены в гидрогётит-шамозит-глауконитовых осадках, минимальные — в диатомовых и биогенных сильно-известковых отложениях. Повышенные количества железа отмечены также в глауконитовых и вулканокластических осадках и в пелагических илах (красных глинах). Высокие содержания Fe в гидрогётит-шамозит-глауконитовых осадках обусловлены наличием больших количеств бурых и коричневых овойдов (их размеры 0,5—0,05 мм) гидрогётита и шамозита и зелено-черных зерен глауконита (6, 7). Гидрогётит-шамозит-глауконитовые осадки представлены илами. Они, а следовательно и папболее высокие концентрации Fe, приурочены к предустьевым участкам шельфа Экваториальной Африки. Глауконитовые отложения (пески и крупные алевриты) распространены на шельфе аридных зон всего континента.

Вулканокластические осадки, приуроченные к хребтам Ян-Майен и Рейкьянес и к о. Исландия, обогащены Fe за счет богатых этим элементом (5-12% Fe) пирокластического материала и продуктов разрушения базальтов (титапо-магнетит, моноклинные пироксены, пепловые частицы и т. д.).

Высокие содержания Fe в пелагических областях океана обусловлены залеганием здесь красных глубоководных глин, заметно обогащенных тонкодисперсным материалом гидроокислов железа и другими минералами пелитовой размерности, богатых Fe.

^{*} Определение железа выполнено А. В. Мельник в Атлантическом отделении Института океанологии АН СССР и в Аналитической лаборатории того же института под руководством О. И. Зеленской. Определение велось после кислотного разложения пробы методом трилонометрии.

Тип осадна	Натуральный осадок			В пересчете на бескар- бонатно-бескремнистое вещество		
	число проб	пределы колеб.	сред- нее	число проб	прецелы колеб.	сред- нее
Терригенные (<10% CaCO ₃) Пески Крупные алевриты Илы мелкоалевритовые Илы алевритово-пелитовые Илы пелитовые Терригенные слабоизвестковистые осадки (10—30% CaCO ₃)	127 40 40 15 7 25 72	$ \begin{bmatrix} 0,19 - 6,58 \\ 0,19 - 3,92 \\ 0,77 - 3,93 \\ 1,95 - 4,87 \\ 1,86 - 5,63 \\ 0,82 - 6,58 \\ 0,86 - 6,08 \end{bmatrix} $	2,97 2,09 2,55 3,52 4,39 4,46 3,18	126 39 40 15 7 25 52	$ \begin{bmatrix} 0,20-7,35\\ 0,20-4,52\\ 1,22-4,46\\ 2,04-5,17\\ 1,93-6,15\\ 0,94-7,35\\ 1,12-7,26 \end{bmatrix} $	3,35 2,28 2,95 3,85 4,77 4,96 4,06
Пески Крупные алевриты Илы мелкоалевритовые Илы алевритово-пелитовые Илы пелитовые Биогенные известковые (30—50%CaCO ₃)	16 12 23 8 13 59	1,12—5,21 2,02—4,39 1,39—4,35 1,10—5,33 0,86—6,08 0,16—6,28	3,08 3,00 2,90 3,83 3,56 2,78	9 11 12 7 13 48	1,78—5,40 2,46—5,56 1,95—5,22 1,52—6,64 1,12—7,26 0,23—9,81	3,46 3,83 3,62 4,82 4,67 4,94
Пески Крупные алевриты Илы мелкоалевритовые Илы алевритово-пелитовые Илы пелитовые Виогенные сильноизвестковые осадки (> 50% CaCO ₃)	11 5 16 14 13 147	$\begin{array}{c} 0,65-5,49\\1,62-3,70\\0,89-5,69\\0,36-4,86\\0,15-6,28\\0,08-6,14 \end{array}$	2,60 2,44 2,81 2,66 3,14 1,50	6 5 10 14 13 113	1,16-6,88 2,68-6,68 1,50-9,59 0,56-9,81 0,23-9,77 1,28-16,59	3,88 4,43 5,28 4,92 5,38 5,87
Пески Крупные алевриты Илы мелкоалевритовые Илы алевритово-пелитовые Илы пелитовые Терригенные слабокремнистые (диатомовые, губковые) (10—30 % SiO _{2аморф})	46 5 33 51 12 7	0,08-3,91 0,54-2,20 0,49-3,57 0,22-4,94 0,56-6,14 1,18-3,28	1,37 1,15 1,50 1,47 2,27 2,73	24 5 27 46 11 7	1,54—16,59 3,85—5,56 2,38—10,0 1,23—11,99 3,83—13,07 1,22—4,80	4,40 5,54 5.65
Пески Крупные алевриты Илы мелкоалевритовые Илы алевритово-пелитовые Илы пелитовые Диатомовые илы (>30% SiO _{2аморф}) Илы алевритово-пелитовые Илы пелитовые Вулканокластические осадки Пески Крупные алевриты Илы мелкоалевритовые Илы алевритово-пелитовые Глауконитовые и гидрогётит-шамо- зитовые осадки	1 1 2 1 3 10 4 6 36 6 5 17 8 18		8,33 7,60 7,25 6,60 8,69	1 1 2 1 3 10 4 6 30 6 5 12 7 18	2,87-4,16 2,16-4,80 1,49-2,27 1,60-2,22 1,49-2,27 5,47-12,62 5,87-12,62 6,22-10,68 6,08-17,86 6,74-11,38 5,18-19,94	9,42 8,56 9,65 8,96 10,69
Красные глубоководные глины Среднее содержание в осадках Пески Крупные алевриты Илы мелкоалевритовые Илы алевритово-пелитовые Илы пелитовые	474 125 72 107 94 76	3,22—11,72 0,08—17,46 0,08—17,46 0,54—10,77 0,49—11,54 0,22—10,59 0,15—8,83		402 90 71 79 87 75	3,28—13,00 0,20—19,94 0,20—19,94 1,22—11,26 1,50—17,86 0,56—11,99 0,23—13,07	5,18 4,78 4,11 5,64 5,83

Как видно из табл. 1, в терригенных и биогенных карбонатных осадках содержание железа почти во всех случаях повышается от песков к пелитовым илам. Наиболее резко это повышение происходит в терригенных (бескарбонатных), наиболее плавно—в биогенных (сильноизвестковых) осадках. Такое упорядоченное по классификации Н. С. Страхова (10) рас-

пределение обусловлено, как известно, тем, что в этих генетических типах осадков железо связано в основном с глинистыми минералами и с тонкодисперсными гидроокислами железа. В тех случаях, когда этот элемент связан с минералами песчано-алевролитовой размерности (натуральные вулканокластические, глауконитовые и гидрогётит-шамозит-глауконитовые осадки), отмечается обратная картина: повышение концентраций железа при персходе от пелитовых илов к пескам. Такой тип распределения можно было бы назвать обратно упорядоченным. Однако, если пересчитать содержания Fe на бескарбонатно-бескремнистое вещество, то упорядочность исчезает, и распределение элемента относится уже к так называемому пестрому типу (10).

В областях распространения терригенных и биогенных (карбонатных и кремнистых) осадков, в илистых их разностях в пересчете на бескарбонатно-бескремнистое вещество проявляется четкая тенденция увеличения содержаний Fe по мере возрастания глубины. Так, в плах шельфа (мелкоалевритовых, алеврито-пелитовых п пелитовых) содержания Fe колеблются в пределах от 1,93 до 6,50% и в среднем по 32 пробам равно 4,74; в илах материкового склона (глубина 200-4500 м) — от 1,10 до 11,99%, в среднем 5.14% (111 проб); в илах котловин (глубже 4500 м) — от 1.32до 13,07%, в среднем 5,61% (84 пробы). Средние же содержания в натуральных осадках этих зон океана распределены неравномерно (3.86: 2.17 и 3,47% соответственно), что связано с неодинаковым содержанием СаСО₃. Обогащение железом пелагических илов по сравнению с шельфовыми явное, хотя и незначительное. Это говорит о том, что роль химико-диагенетических и вулканических процессов в обогащении Fe осадков глубоководных котловин довольно невелика. Этот факт также свидетельствует о том, что железо, содержащееся в глубоководных илах, является в основном обломочным, что подтверждается как минералогическим анализом различных Фракций илов, так и другими видами исследований.

В целом для океана намечается также некоторая тенденция увеличения в одном и том же гранулометрическом типе осадков (в пересчете на бескарбонатно-бескремнистое вещество) содержаний Ге по мере приближения от высоких широт к экватору. Это объясняется как повышенными содержаниями в осадках Экваториальной Атлантики рудных минералов песчано-алевритовой размерности (8), так и появлением в илах этой зоны значительных примесей аутигенных силикатов железа (6, 7).

По мере возрастания содержаний Fe выделенные вещественно-генетические типы осадков (натуральных) располагаются в следующий ряд: диатомовые илы — биогенные сильноизвестковые — терригенные слабоизвестковые — биогенные известковые — терригенные (бескарбонатные) — терригенные слабоизвестковые — красные глубоководные глины — вулканокластические — глауконитовые и гидрогётитшамозитовые осадки. В пересчете на бескарбонатно-бескремнистое вещество этот ряд несколько нарушается (см. табл. 1), однако его крайние члены остаются на своих местах.

В целом средние содержания железа (в пересчете на бескарбонатнобескремнистое вещество) в Атлантическом океане заметно выше, чем в осадках Черного (⁹, ¹⁰) и Средиземного (¹¹) морей или чем средние содержания (кларки) этого элемента в осадочных породах суши.

Знание закономерностей распределения Fe по площади дна и по типам осадков во многом облегчает картирование осадков и изучение их минерального состава. Например, наличие в экваториальной шельфовой зоне океана пятен с содержанием Fe > 5-6 % в большинстве случаев говорит о том, что здесь происходит накопление аутигенных силикатов железа. Наличие таких участков в областях современного вулканизма свидетельствует о залегании здесь вулканокластических осадков и т. д.

Сравнивая содержания железа в осадках Атлантического и Тихого океанов (12), можно отметить следующие различия между ними: 1) средние содержания Fe в осадках Атлантического океана ниже, чем в осадках

Тихого; 2) в осадках Тихого океана, в отличие от Атлантического, по гранулометрическим типам распределение Fe более равномерно, в результате чего почти не наблюдается повышения содержаний этого элемента при переходе от песков к пелитовым илам. Оба указанных отличия обусловлены большей примесью вулканогенного материала и продуктов разрушения изверженных пород основного состава в осадках Тихого океана по сравнению с Атлантическим.

Акустический институт Москва

Поступило 14 VI 1971

Атлантическое отделение Института океанологии им. П. П. Ширшова Академии наук СССР Калининград

ПИТИРОВАННАЯ ЛИТЕРАТУРА

¹ Е. М. Емельянов, Л. С. Лукошевичюс и др., И Международн. океаногр. конгресс. Тез. докл., М., 1966. ² Атлантический океан. Донные осадки. Карта 7. Распределение железа. Под ред. А. П. Лисицына, М., 1969. ³ С. W. Соггелs, Wiss. Ergebn. Deutsch. Atlant. Exped. «Меteor», З, З, № 2, 1937. ⁴ И. К. Авплов, Тр. Всесоюзн. н.-и. инст. морск. рыбн. хоз. и океаногр., 57, 1965. ⁵ С. К. Эл-Векил, Райли Дж. П., В сборн. Вопросы геохимии и геохронологии океана, М., 1965. ⁶ Е. М. Емельянов, Ю. М. Сенин, Литол. и полезн. ископ., № 5 (1964). ⁷ Е. М. Емельянов, Ю. М. Сенин, Литол. и полезн. ископ., № 5, Литол. и полезн. ископ., № 4, 112 (1968). ⁹ М. А. Глаголева, Современные осадки морей и океанов, Изд. АН СССР, 1961. ¹⁰ Н. М. Страхов, Кн. Основы теории литогенеза, Изд. АН СССР, 1962. ¹¹ Е. М. Емельянов, Основные черты геологического строения, гидрологического режима и биологии Средиземного моря, «Наука», 1965. ¹² Н. С. Скорнякова, Литол. и полезн. ископ., № 5, 3 (1964).