УДК 576.8

ГЕНЕТИКА

к. м. злотников, м. и. хмельницкий

ОБ АВТОНОМНОСТИ ВНУТРИГЕННОГО MEXAHU3MA РЕКОМБИНАЦИИ У ESCHERICHIA COLI K-12

(Представлено академиком А. А. Баевым 29 VIII 1972)

К настоящему времени накопилось очень много косвенных данных, которые позволяют разделять механизм генетической рекомбинации на межгенный и внутригенный механизмы. Это, прежде всего, данные о существовании высокой локальной отрицательной интерференции (1), о выявлении при генетическом анализе у грибов особых единиц организации rенома - поляронов (2, 3), о различном влиянии внешних факторов на межгенные и внутригенные рекомбинации (4,5) и так далее (подробнее см. в книге Кушева (6)). Следует отметить, что выражение «внутригенный механизм рекомбинации» при существующем уровне знаний о структурнофункциональной организации генома является условным и соответствует пока выражению «механизм рекомбинации на коротких участках». Тем не менее, представление об автономности внутригенного механизма рекомбинации дает основание высказать рабочую гипотезу о существовании в клетке особой ферментной системы для внутригенных рекомбинаций. При нарушении такой системы посредством мутации в первую очередь должны наблюдаться изменения в частотах внутригенных рекомбинаций. Задачей настоящей работы и было выяснение возможности выделения мутантов rec- с такими свойствами у Е. coli K-12.

Мутанты получали с помощью NG (N-methyl-N'-nitro-N-nitrosoguanidine) у штамма F^-P86 (генотип штамма, табл. 1). При этом культуры в логарифмической фазе роста обрабатывали мутагеном в концентрации 100 мг/мл в течение 20 мин. при 37° в 0,1 M цитратном буфере рН 6,0 (7) — условия, при которых уровень выживаемости бактерий был около 40%. После отмыва от мутагена и подращивания в течение 6—8 час. в мясо-пептонном бульоне (м. п. б) культуры высевали на чашки с минимальной средой и выросшие колонии проверяли на способность осуществлять генные и внутригенные рекомбинации в скрещиваниях с HfrAB312 и $Hfr312argG_7$ (генотип штаммов — табл. 1), отбирая рекомбинанты arg^+pur^+ . Для повторной проверки брали колонии, которые давали рекомбинаты arg^+pur^+ в скрещиваниях с HfrAB312 и не давали (или давали очень мало) в скрещиваниях с $Hfr312argG_7$. Скрещивания проводили в плошках из оргстекла с лунками, откуда конъюгационная смесь печаталась на чашки с селективной средой с помощью специальных печаток. Этот метод позволил нам анализировать в день до 200 колоний.

Из более чем 2000 проверенных колоний нам удалось отобрать 8 независимо выделенных мутантов, у которых наблюдалось значительное снижение частоты внутригенных рекомбинаций в гене arg G. Частота рекомбинаций определялась в специальных скрещиваниях как отношение в процентах числа рекомбинантов класса по внутригенным рекомбинациям (класс а) к общему числу рекомбинантов родительского класса (класс b, табл. 1). У части штаммов параллельно со снижением частоты внутригенной рекомбинации резко снизился и уровень ревертабельности по гену arg. Генетический анализ этих штаммов показал, что они являются гес⁺, и их свойства обусловлены дополнительными мутациями или в других генах

arg, или в пределах локуса argG (для выяснения второго случая мы заменяли у исследуемых штаммов район хромосомы с локусом argG на аналогичный район от родительского штамма Р86 и проверяли у них уровень ревертабельности и частоту рекомбинации в гене argG). Остальные мутанты имели нормальный уровень ревертабельности по гену агдG, частота внутригенной рекомбинации в этом гене у них была спижена в зависимости от штамма в 2-4 раза. При проверке способности включать маркеры донора в расчете на 100 клеток Hfr все они показывали фенотип rec+ (проверяли в скрещиваниях с HfrKL16 и HfrH), кроме того все мутанты, за исключением геса, были устойчивы к у.-ф. Известные до сих пор классы гес- мутантов характеризуются спижением частоты включения марке-

Таблица 1 Частоты внутригенных рекомбинаций в скрещиваниях Hfr×F- (данные единичных опытов)

Штаммы Нігт и время скрещи- вания в мип.	Щтаммы Г−**	а *** в 0,5 мл контыогаци- онной смеси	b *** (X100) в 0,5 мл конъю- гационной смеси	Частота ре- комбинации в % (a/b)	Штаммы Hfr * и время скрещи- вания в мин.	Щтаммы F-**	а *** в 0,5 мл конъюгаца- онной смеси	b *** (X100) в 0,5 мл контяютаци- онной смеси Частота ре- комбинация в % (a/b)
312 arg G ₇ , 30 KL 16thy ₁ , 50	recI ₈ prvI ₁ P86 recI ₈ prvI ₁ P86	25 87 220 120 1540 194	870 370 1750 1070 3700 283	$0,23 \\ 0,13$	311 his ₂ , 50 30 SOdrm ₇ , 40	recI ₈ prvI ₁ P86 recI ₈ prvI ₁ P86	228 870 1192 470 1460 706	690 0,33 512 1,69 1418 0,84 1270 0,37 794 1,84 760 0,93

^{* 312} argG, — производный штамма AB312 (см. (*)), у которого нами получена с помощью NG мутация argG, Генотии штамма: thi, риг, argG, lac. KL thy,— производный штамма KL16 (*), у которого нами с помощью аминоптериновой методики взделена мутация thy. Генотии пламма: thi, thy, i. 11 his,— производный штамма AB311 (*), у которого с помощью NG мы получили мутацию hiз. Генотии штамма: thi, thy, leu, lic, his, (à defective)+. 30 SOdrm,— производный НГН (*), старое обозначение штамма Hfr tlr, (**). Генотии штамма: thi, lac, thy, drm,— В скрещиваниях с целью стандартизации условий через указанные промежутки времени осуществатися перечание коньюгации с помощью фага T6, с мномественностью, большей 400.

** Интамм Р86 происходит от штамма Р678 и имеет генотии: thi, malA, drm, xyl, mtl, rha, ara, lac, gal, arg; thr, leu, trp, hi; thyA, arof, str, trx, tfrA. Мутации rha, argG, trp, his, thyA, arof, txx выделены нами (thyA—с потоцью аминоптерньовой методики, txx и drm—спонтанные мутации, остальные полученые помощью NG). Обозначение маркеров см. (").

*** а, b—классы рекомбинатов. В скрещиваниях с Hfr32 argG; а — argf malf purf, b— malf purf; с KL13thy; а— thyThi, trr, b— hi; trr, с 31 his; а— hist trp+ str-r, b— trp+ str-r; с 30 SOdrm; а— drm+ leu+ str-r, b— leu+ str-r (селективные условия для отбора рекомбинантов класса drm см. ("). Кнасс b, (×100).

ров донора, и уже на основе этого признака выделенные нами мутанты можно отнести к особому классу. В соответствии с устоявшимся способом обозначения гес мутантов (⁸), выделенные мутанты мы предварительно обозначили как класс recl.

Для детального изучения мы взяли у.-ф. чувствительный мутант recls, так как нас интересовал вопрос о возможной связи у.-ф.-чувствительности с механизмом внутригенной рекомбинации. Этот мутант, в отличие от других, характеризовался заметно сниженной жизнеспособностью и чувствительностью к высоким температурам, при дозе у.-ф. 200 эрг/мм² выживаемость у него была около 10%. В таби. 1 приведены величины впутригенных рекомбинаций для этого штамма в генах argG, thyA, his и drm. Во всех случаях была зафиксирована статистически достоверная разница в честотых рекомбинации по сравнению с контрольным штаммом Р86, причем в генах argG и thyA эта разпица достигала величины 4 и б. Такая разница позволила нам осуществить картирование гена гес I на хромосоме E. coli. В скрещиваниях различных штаммов. Hfr со штаммом recI_8 мы отбирали рекомбинанты по маркерам, расположенным в разных частях хромосомы, и проверяли их на наследование фенотипа recI (в скрещиваниях с Hfr312argG₇) и у.-ф.-чувствительности. В этих опытах было най-

дено, что оба свойства наследуются с большой частотой с генами mtl и rha. Кроме того, при анализе 30 рекомбинантов rha⁺ был обнаружен рекомбинант генотипа rha⁺ recI uv-r. Этот факт говорит о том, что свойства recI и uv-s контролируются разными генами.

Следует отметить, что низкие частоты внутригенных рекомбинаций в скрещиваниях со штаммом гесІ₈ хорошо воспроизводятся только в опытах со свежими культурами. После хранения и нескольких пересевов штрихом на чашках с мясо-пентонным агаром (м.п.а.) культуры дают более высокие значения частот рекомбинации. Оказалось, что последнее свойство вызывается накоплением в культурах исевдоревертантов, и из рассевов таких культур нам удалось выделить штамм (мы его обозначили prvI № 1),

который показывал частоты внутригенных рекомбинаций. горазло более высокие (за исключением гена thv), чем контрольный P86 (табл. 1). Штамм prvI, кроме того, практически восстанавливал нормальный уровень жизнеспособности и не отличался от штамм recI₈ у.-ф.-чувствительности. Предполагая, что свойство prvI обусловлено супрессорной мутапией в неизвестном гене, мы предприняли карти-

Таблица 2
Частоты внутригенных рекомбинаций в гене drm
у штаммов гест классов A, В и С (суммарные
данные двух опытов) *

Штаммы F-	ав 2 мл конъюгацион- ной смеси	b (Х10) в 2 мл конъюгацион- ной смеси	Частота ре- комбинации
P86 recB	23	182	1,26
P86 recC	62	1035	0,59
P86 recA	0	317	0,00
P86	1060	11970	0,88

* Обозначения см. в табл. 1 и в тексте.

рование этого гена на хромосомной карте. Использовали при этом тот же метод, что и при картировании гена recl и нашли, что ген prvl тесно сцеплен с геном thvA (около 90% сцепления).

При пашем способе определения частоты внутригенной рекомбинации источником артефактов могло бы быть значительное изменение у мутантов rccI₈ и prvI₁ уровня сцепления между маркерами донора. Однако в специально проделанных опытах нам не удалось обпаружить сколько-нибудь заметную разницу в сцеплении маркеров допора у мутантов recI₈, prvI₁ и контрольного штамм P86.

Основное значение полученных результатов, на наш взгляд, состоит в том, что они доказывают существование у E. coli особой энзиматической системы, контролирующей внутригенные рекомбинациии. Эта система, очевидно, представляет единый для всего генома механизм, так как эффект мутаций recI_8 и prvI_1 проявляется в нескольких генах, расположенных в разных частях хромосомы. Известные же гены rec у грибов (12) влияют на частоту впутригенных рекомбинаций только в определенных $\operatorname{генах}$ и, по-видимому, затрагивают иную систему контроля.

У мутапта ${\rm recI_8}$ частоты внутригенных рекомбинаций снижены в несколько раз, под влиянием же мутации ${\rm prvI_1}$ они становятся гораздо более высокими, чем даже у контрольного штамма. При этом частота наследования маркеров донора в расчете на 100 клеток Hfr у штаммов ${\rm recI_8}$ и ${\rm prvI_4}$ заметно не снижена. Эти данные указывают на существование специального механизма внутригенных рекомбинаций, отличного от механизма межгенной рекомбинации (механизм пнтеграции фрагментов ДНК донора). Попробуем теперь допустить, что у известных мутантов ${\rm rec}$ А, В и С нарушен механизм межгенной рекомбинации. В таком случае механизм внутригенной рекомбинации у иих должен функционировать пормально. Для проверки этого предположения нами были проделаны специальные опыты.

В скрещиваниях Hfr штаммов JC5088, JC5412, JC5426 (13) с F-P86 мы получили штаммы F-P86 thy+ recB, P86 thy+ recC и P86 thy+ recA и проверили у них в скрещиваниях со штаммов 30S0 drm, частоту внутригеи-

ной рекомбинации в гене drm. Для предотвращения проникновения гес[†] аллеля время конъюгации было ограничено 30 мин. В опытах со штаммами гес В и С трудно было получить большие количества рекомбинантов родительского класса, вследствие чего наблюдались колебания от опыта к опыту в частоте внутригенной рекомбинации. Несмотря на это, полученные данные (табл. 2) позволяют сделать вывод о том, что частота внутригенной рекомбинации у этих штаммов практически не отличается от таковой у контрольного штамма. Следовательно, эти результаты также говорят в пользу автономности механизмов внутригенной и межгенной рекомбинаций.

В случае штамма гесА нам не удалось получить рекомбинанты класса drm⁺ leu⁺. Возможно, ферментная система гесА необходима как при межгенных, так и при внутригенных рекомбинациях. С другой стороны показано, что в скрещиваниях с F-гес A образуются в основном не истинные рекомбинанты, а устойчивые меродиплоиды (14). Значит, в наших опытах количество настоящих рекомбинантов leu⁺ могло быть недостаточным для выявления класса drm⁺leu⁺.

Авторы глубоко признательны академику А. А. Баеву за помощь в работе и участие в обсуждении полученных данных.

Институт биохимин и физиологии микроорганизмов Академии наук СССР Пушино-на-Оке Поступило 21 VIII 1972

цитированная литература

¹ L. C. Norkin, J. Mol. Biol., **51**, 633 (1970). ² P. Lissoube, G. Rizet, C. R., Ser. D, **250**, 3408 (1960). ³ N. E. Murray, Genetics, **48**, 1163 (1963). ⁴ R. Holliday, In: Replication and Recombination of the Genetic Material, Canberra, 1968, p. 157. ⁵ E. G. Hunnable, B. S. Cox, Mutation Res., **13**, 291 (1971). ⁶ B. B. Kymeb, Mexahusma генетической рекомбинации, J., 1971. ⁷ E. A. Adelberg, M. Mandel, G. C. C. Chen, Biochem. Biophys. Res. Commun., **18**, 788 (1965). ⁸ P. K. Storm, W. P. M. Hackstra et al., Mutation Res., **13**, 9 (1971). ⁹ A. L. Taylor, C. D. Trotter, Bacteriol. Rev., **31**, 332 (1967). ¹⁰ R. M. Злотников, B. B. Суходолец, Г. Э. Бауманис, Генетика, **5**, № 12, 114 (1969). ¹¹ A. L. Taylor, Bacteriol. Rev., **34**, 155 (1970). ¹² D. G. Catcheside, Barbara Austin, Aust. J. Biol. Sci., **24**, 104 (1971). ¹³ N. S. Willetts, A. J. Clark, J. Bacteriol., **100**, 231 (1969). ¹⁴ M. B. Topochh, O. B. III ишкова, Генетика, **8**, № 7, 103 (1972).