УДК 553.611.6 (478.9)

ЛИТОЛОГИЯ

Ф. С. ПЕРЕС, Г. М. БИЛИНКИС, М. И. ЖЕРУ

новые данные о бентонитах молдавии

(Представлено академиком Н. М. Страховым 7 І 1972)

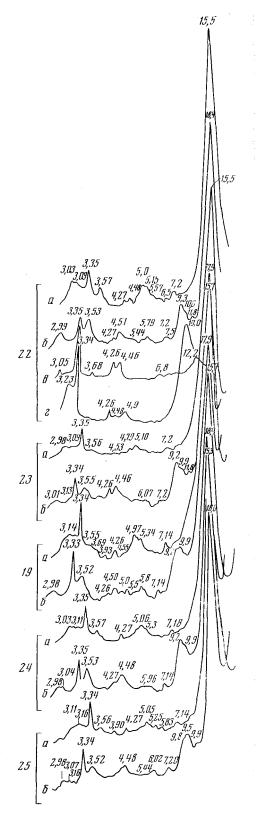
На территории МССР описаны многочисленные выходы бентонитовых глин в тортон-сарматских (4-7, 9) и докембрийских (3) отложениях. Качество бентонитов высокое, но из-за малой мощности пластов (до 1 м) и неблагоприятных горно-технических условий опи не разрабатываются.

В 1971 г. в юго-западной части Молдавии (села Кочулия и Ларгуца Комратского района) нами был обнаружен пласт бентопитовых глин, приуроченный к регионально распространенной плиоцечовой поверхности выравнивания (2). Разрез плиоценовых отложений у с. Кочулия:

Нижний плиоцен

1. Глины пятнистой окраски (зеленые, черные, серые), комковатые,		
бесструктурные		
2. Глины черные, плотные, комковатые с зеркалами скольжения на		
плоскостях скола		
Средний-верхний плиоцен		
4. Гравий, состоящий из гальки яшм, песчаников и кремней, цементи-		
4.2 4.5 s.		
7. Глины красно-бурые, с известковистыми копкрециями . 1,2—1,5 м		
8. Бентониты пепельно-серые, бесструктурные, пластичные, с редкими		
стые		
2. Глины черные, плотные, комковатые с зеркалами скольжения на поскостях скола		
10. Суглинки падево-желтые		
11 Чернозем 0.3—0.4 м		
V с. Конульна болжовыем да чорогот на красно бурку глинау изирановорой		
у с. Ларгуца, пласт бентонита мощностью от 2,3 до 3 м на той же относи-		

Таблица **1** Гранулометричэский состав Кочулийских бентонитов (%)


№ обр.	Фракции (мм)							
	>0,5	0,5-0,25	0,25-0,1	0,1-0,05	0,05-0,01	0,01-0,005	0,005-0,001	<0,001
21 22 23 24 25	0,59 0,08 0,51 1,30 0,19	2,63 2,03 1,82 2,59 3,53	0,89 0,78 0,74 0,84 0,79	4,92 4,83 4,81 4,55 4,30	6,06 12,36 11,16 10,99 11,78	17,57 14,26 16,86 15,54 18,79	42,57 33,46 34,71 35,23 33,75	24,78 32,16 29,36 28,93 21,88

тельной отметке перекрывает пески «стольниченской» толіци среднего плиоцена и зеленовато-желтые глины понта. Залегание бентонитов на генетически разных породах, выдержанность состава и мощности указывают на их площадное распространение.

По данным гранулометрического анализа (табл. 1), в бентоните содержится 80-85% пелитовых, 11-17% алевритовых и 2.5-4.5%песчаных частиц. В состав фракции 0.1-0.05 мм входят главным образом терригенные минералы (кварц, полевой шпат и мусковит), а также комплекс акцессориметаморфического генезиса: рудные минералы, рутил, циркон, турмалин, ставролит, гранат, дистен, силлиманит и др.; второстепенное значение имеют аутигенные минералы - кальцит и барит: вулканическое стекло не обнаружено. Химические апализы бентонитов (%): SiO_2 53.90-63,16; Al_2O_3 11,40-13,58; TiO_2 0,88-1,15; $Fe_2O_3 + FeO 3,97-5,31; MgO 2,33-$ 3,09; CaO 1,36-3,47; Na₂O 0,15-0₂34; K₂O 0,37-1,44; п.п.п. 15,16-19.06 (по 10 пробам) показывают повышенное содержание кремпезема, титана и железа, что характерно для переотложенных кор выветривания.

Рентген - дифрактометрические исследования (рис. 1) свидетельствуют о том, что главным компонентом бентонитов является пеупорядоченный смещапно-слойный гидрослюдисто - монтмориялонитовый минерал, сильно обогащенный набухающими слоями. В естественных препаратах (фр. 0,005 мм) он дает обычную для монтмориллонита серию отражений со зна-15.3 - 15.7; имкинэр 5,10-5,34; 3,09-3,14 Å.3,90-3,93;при насыщении препаратов глице-

Рис. 1. Дифрактометрические кривые Кочулийских бентопитов. 22-25— номера образцов. a— естественные образцы; b— образцы, насыщенные глицерином; b0 образец, обработанный b1 ираствором КОН в течение b3 час. при b4 гоченный в течение b5 час. при b7 гочение b8 гечение b9 гечение b9

рином появляется ряд интенсивных нецельночисленных рефлексов (17.6-18.4; 9.1-9.3; 5.8-6.07; 4.46-4.51 Å), близких к рефлексам изученного Бистромом (¹) иллит-монтмориллонитового минерала системы 1:4 (17.7; 9.0; 5.61; 4.47 Å). После прокаливания образцов (кривая 22ε) решетка нашего минерала сократилась, как у обычного монтмориллонита, до 10 Å. Насыщением препаратов 1 N раствором КОН по методу Уивера (¹⁰) решетку удалось сократить только до 12.2 Å (кривая 22ε), что свидетельствует о существенной роли неслоистых силикатов в образовании изученных глин. Слабые рефлексы 9.9-10; 11.6-11.8; 7.14-7.20; 4.26-4.27 и 3.03 Å указывают на присутствие незначительной примеси гидрослюды, смешанно-слойного гидрослюдисто-монтмориллонитового минерала (бедного набухающими слоями), каолинита, кварца и кальцита.

Описанные бентониты обладают очень высокими физико-химическими качествами (их емкость катионного обмена составляет 79—81 мг-экв на 100 г сухой породы, причем в поглощенном комплексе резко преобладают щелочноземельные катионы) и, как показали опыты, являются хорошими осветителями вин, соков и различных масел. Коэффициент вспучивания бентонитов (до 10) позволяет использовать их как сырье для получения высококачественного керамзита, а высокая пластичность — применять в литейном производстве и во многих других отраслях народного хозяйства.

Приведенные минералого-литологические данные позволяют предположить, что бентониты юго-запада МССР образовались в результате переотложения в континентальных водоемах доплиоценовых продуктов выветривания слоистых осадочно-вулканогенных толщ, широко развитых в соседних районах Румынской Социалистической Республики. Минералогическое однообразие бентонитов свидетельствует о существовании единой устойчивой области сноса и о незначительной роли седиментогенных и постседиментогенных процессов в их формировании. Этим подтверждается мпение Н. М. Страхова (8) о том, что глинистые минералы в процессе переноса и седиментации не претерпевают существенных преобразований.

Стратиграфическая приуроченность описанных бентонитов к верхиим горизоптам изподеновых отложений юга междуречья Прут — Дисстр, их ассоциация с регионально распространенными красно-бурыми глинами и террасовыми отложениями изподеновой поверхности выравнивания указывают на высокую вероятность большой площади этого месторождения. Вся территория Баймаклийской морфоструктуры должна стать объектом для постановки поисковых работ.

Институт геофизики и геохимпи Академии наук МССР Кишинев Поступило 3 I 1972

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

⁴ А. М. Вузтго т, Kinnekulle bentonite beds, Sverig. Geol. Unders., Arsbok 48, № 5, 1954. ² Г. М. Билинкис, Тез. докл. республиканской научной сессии по географии Молдавии, Кишинев, 1970. ³ М. И. Жеру, В кн. Петрография осадочных, осадочно-эффузивных и метаморфических образований Молдавской ССР, Кишинев, 1970. ⁴ N. Могоşа n, Comp. Rend. des sciencet de l'Inst. geol. de Roumanie, 2, 19, Висигеştі, 1933. ⁵ С. И. Назаревич, Геол. журн. АН УССР, 3, в. 2 (1936). ⁸ В. С. Саянов В. М. Бобринский, Изв. Молд. фил. АН СССР, № 7 (52) (1958). ⁷ В. С. Саянов, Ф. С. Перес, там же, № 9 (75) (1960). ⁸ Н. М. Страхов, Основы теории литогенеза, 1—3, Изд. АН СССР, 1960—1962. ⁹ И. М. Сухов, Уч. Зап. Кишиневск, унив., 10, № 1 (1955). ¹⁰ Ч. Е. Уивер, В сборн. Вопросы минералогни глип, ИЛ, 1962.