УДК 541.11 ХИМИЯ

Г. М. КОЛЬЯКОВА, И. Б. РАБИНОВИЧ, Е. Н. ЗОРИНА

ТЕРМОХИМИЯ ТРИЭТИЛ-, ТРИБУТИЛ- И ТРИИЗОБУТИЛГАЛНИЯ

(Представлено академиком Γ . А. Разуваевым 18 IX 1972)

Определение термохимических характеристик галлийорганических соединений необходимо для термохимических расчетов процессов получения из этих соединений полупроводниковых материалов. В частности, нужны данные об энтальпиях образования соединений галлия с другими элементами. Однако таких данных в литературе очень мало.

В связи с этим в настоящей работе калориметрически определены энтальнии сгорания $(C_2H_5)_3Ga(I)$; $(n\text{-}C_4H_9)_3Ga(II)$ и $(uso\text{-}C_4H_9)_3Ca(III)$. Рассчитаны энтальнии образования тех же соединений в жидком и газообразном состоянии и средние энергии диссоциации связей Ga-Alk в I-III. Синтезы и очистка I-III соединений выполнены по методикам. описанным в работах $\binom{1-3}{3}$ соответственно. Полученные соединения имели температуры кипения указанные в $\binom{1-3}{3}$. Результаты элементарного анализа I-III с точностью 0.5% отвечали формульному содержанию углерода, водорода и галлия. Все вещества были хроматографически индивидуальными.

Тепловой эквивалент калориметрической системы установлен по эталонной бензойной кислоте ($\Delta U = -6324$ кал/г при взвешивании в воздухе,

Таблица 1 Стандартные энтальпии сгорания (ΔH_{c}^{0} .), образования (ΔH_{f}^{0}) и средние энергии диссоциации связей D (Ga — Alk), ккал/моль

С оед и нение	$-\Delta H_c^0 \pm 1$	$-\Delta H_f^0$ ж ± 1	$-\Delta H_f^0$ r $\pm 1,5$	Связь	<u></u>
$(C_2H_5)_3Ga \ (n\text{-}C_4H_9)_3Ga \ (uso\text{-}C_4H_9)_3Ga$	1181	28	18	Ga — Et	54
	3113	67	53	Ga — n-Bu	56
	2111	69	56	Ga — uso-Bu	54

1 кал. = 4,1840 джоулей). Он составлял 2608 ± 1 кал/град. В оболочке калориметра поддерживалась температура $25,00 \pm 0,5^{\circ}$ С. Давление кислорода в бомбе было 30 ± 1 атм. Подъем температуры во время опыта, составлявший $1,9 \div 2,2^{\circ}$, измеряли метастатическим термометром с точностью $0,001^{\circ}$.

Все вещества сжигали в стеклянных ампулах, заполнение которых производили при пониженном давлении, в токе сухого аргона. Чтобы обеспечить полное сгорание вещества, а также поджигание его и указанный выше подъем температуры, исследуемые вещества сжигали совместно с таблеткой бензойной кислоты, посредством хлопчатобумажной пити. Воду в бомбу не вводили. Условия поджигания во всех опытах были одинаковыми.

В каждом опыте определяли количество образовавшейся углекислоты, причем принимались во внимание результаты только тех опытов, в кото-

рых получалось $100 \pm 0.1\%$ СО $_2$ относительно содержания углерода в навесках сгоревших веществ. В этих опытах при анализе твердых продуктов сгорания не было найдено следов сажи или металлического галлия. Отсутствие окиси углерода было установлено методом (4). Суммарное количество теплоты, выделившегося во время опыта в бомбе, составляло 5500-6200 кал. При вычислении теплот сгорания изучаемых веществ учитывались поправки на теплообмен (по формуле Реньо — Пфаундлера), на сгорание бензойной кислоты (3500-4000 кал.), сгорание нити (7-10 кал.), образование азотной кислоты (1-3 кал.).

Найденные энтальпии сгорания органических соединений галлия до ${\rm CO_2}$ (газ), ${\rm H_2O}$ (жидк.), ${\rm Ga_2O_3}$ (тв.) при P=4 атм. и $T=298^\circ$ К приведены в табл. 1. Для энтальпий сгорания указаны удвоенные средние квадратичные оппоки 7-9 измерений.

Энтальпии парообразования ($\Delta H_{\, {
m Hap}}^{\, 0}$), необходимые для расчета $\Delta H_{f\, {
m I}}^{\, 0}$ по $\Delta H_{f\, {
m H}}^{\, 0}$, были вычислены по температурной зависимости давления пара для I—III по данным (5-7) соответственно.

В расчетах $\Delta H_{f^{\,\mathrm{R}}}^0$ по $\Delta H_{c^{\,0}}^{\,\mathrm{O}}$ использованы значения: $\Delta H_{f^{\,\mathrm{O}}}$ (CO $_{2\,\mathrm{r}}$) = $-94{,}051$; $\Delta H_{f^{\,\mathrm{O}}}(\mathrm{H}_{2}\mathrm{O}_{\mathrm{R}}) = -68{,}315$ (8) и $\Delta H_{f^{\,\mathrm{O}}}(\mathrm{Ga}_{2}\mathrm{O}_{3\,\mathrm{TB}}) = -258$ (9).

По вычисленным значениям $\Delta H_{f\Gamma}^0$ изученных веществ, данным (10) для ΔH_f^0 радикалов C_2H_5 равное 26, n- C_4H_9 16, u-зо- C_4H_9 13,7 и ΔH_f^0 атомарного галлия равного 65,8 ккал/г-ат (11) рассчитаны теплоты диссоциации ΔH_{guec}^0 алкилпроизводных галлия на атомарный галлий и указанные радикалы.

По формуле

$$\overline{D} \left(\mathrm{Ga} - \mathrm{R} \right) = {}^{1}/_{3} \Delta H_{\,\mathrm{mucc.}}^{0} \left(\mathrm{R}_{3} \mathrm{Ga_{r}} \right)$$

рассчитаны средние энергии диссоциации связей галлий — алкил в I—III. В указанных расчетах считали, что $\rm Et_3Ga,\ \it n-Bu_3Ga,\ \it uso-Bu_3Ga,\ \it B$ газовой фазе мономерны (11, 12).

В литературе имеются две работы, в которых по термохимическим данным рассчитаны значения средней энергии диссоциации связи Ga—Me в Me₃Ga: 57,7 (11) и 56,7 (13) ккал., которые согласуются с нашими данными (табл. 1) для D (Ga—Alk).

Научно-исследовательский институт химии при Горьковском государственном университете им. Н. Й. Лобачевского Поступило 12 IX 1972

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ С. Н. Kraus, F. S. Toonder, Proc. Nat. Acad. Sci., U.S.A., № 19, 292 (1933).

² Н. Hartmann, H. Zutsche, Naturwiss., № 49, 182 (1962).

³ J. P. Oliver, L. G. Stevens, J. Inorg. and Nucl. Chem., 24, 953 (1962).

⁴ Б. Г. Еремина, Газовый анализ, М.—Л., 1955.

⁵ L. M. Dennis, W. Patnode, J. Am. Chem. Soc., 54, 182 (1932).

⁶ G. E. Coates, M. L. N. Green, K. Wade, The Main Group Elements, London, 1967.

⁷ H. Hartmann, H. Lutsche, Naturwiss., 48, 601 (1961).

⁸ U. S. Nat. Bur. Stand., Techn. Note, № 270—3, Washington, 1968.

⁹ У. Д. Верятин, В. П. Маширев и др., Термодинамические свойства неорганических веществ, Справочник, М., 1965.

¹⁰ S. W. Вепson, Thermochemical Kinetics, 1968.

¹¹ L. H. Long, J. F. Sackman, Trans. Farad. Soc., 54, 1797 (1958).

¹² П. Посон, Химия металлоорганических соединений, М., 1970, стр. 10.

¹³ С. Т. Могтітег et al., J. Chem. Soc., 1958, 3734.