Е. А. КРАСИЛЬЩИКОВА

АКУСТИЧЕСКОЕ ПОЛЕ В ГАЗЕ ОТ ПРОИЗВОЛЬНЫХ ВОЗМУЩЕНИЙ НА ДВИЖУЩЕЙСЯ ПЛАСТИНКЕ

(Представлено академиком Л. И. Седовым 1 VI 1972)

1. Рассмотрим движущуюся пластинку ширины d в неограниченной идеальной сжимаемой среде. Пластинка движется прямолинейно поступательно с дозвуковой скоростью u под углом атаки, равным нулю. Начиная с момента времени t_0 по поверхности пластинки распространяется фронт малых возмущений. Нормальная составляющая скорости точек поверхности пластинки задана соответственно на верхней и на нижней стороне пластинки: $v_n = A_{\rm B}$ и $v_n = A_{\rm H}$, где $A_{\rm B}$ и $A_{\rm H}$ — функции времени и точек поверхпости пластинки — малые величины $\binom{1}{2}$.

Возьмем неподвижную систему осей координат Oxz. Начало O поместим в такую точку плоскости движения пластинки, где в момент времени t_0 находилась точка A пластинки, начиная от которой распространяются возмущения (рис. 1).

Закон движения пластинки задан в виде

$$x = F(t), \tag{1}$$

где F — произвольная непрерывная функция времени.

Фронт малых возмущений движется относительно пластинки по ее верхней стороне (точка C_1 на рис. 1) по закону $X = f_1(t)$ и по нижней

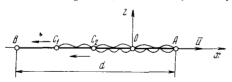


Рис. 1

(точка C_2) — по закону $X=f_2(t)$, где f_1 и f_2 — произвольные непрерывные функции времени. Переменная X=x-F(t). Производные $|f_1'(t)|>c$ и $|f_2'(t)|>c$, где c — скорость звука в певозмущенном газе. Пусть $|f_1'|>>|f_2'|$.

Потенциал скорости абсолютного движения газа будем искать в виде $\varphi = \varphi_1 + \varphi_2$. Функции φ_1 и φ_2 удовлетворяют волновому уравнению, условиям: $\varphi_1(x, -z, t) = -\varphi_1(x, z, t)$, $\varphi_2(x, -z, t) = \varphi_2(x, z, t)$ и граничным условиям на оси Ox.

Для интервала времени $t_0 < t < t_3$ (t_3 — момент, когда точка C_2 достигает границы B) производные ϕ_{1z} и ϕ_{2z} :

$$\varphi_{1z} = \begin{cases}
0, & F(t) - d \leq x < F(t) - f_1(t), \\
\frac{1}{2}A_{B}, & \varphi_{2z} = \begin{cases}
0, & F(t) - f_2(t) < x < F(t) - f_2(t), \\
\frac{1}{2}A_{B}, & F(t) - f_2(t) < x < F(t) - f_2(t), \\
\frac{1}{2}(A_{B} - A_{H}); & F(t) - f_2(t) < x < F(t).
\end{cases} (2)$$

$$A_{\text{\tiny B}} = A_{\text{\tiny B}}(x, t), \quad A_{\text{\tiny H}} = A_{\text{\tiny H}}(x, t).$$

Для $t \ge t_3$ всюду на пластинке $(F(t) - d \le x \le F(t))$ выполняется условие (3).

В любой момент времени перед пластинкой (x > F(t))

$$\varphi_1 = 0, \quad \varphi_{2z} = 0; \tag{4}$$

за пластинкой (x < F(t) - d)

$$\varphi_{tt} = 0, \quad \varphi_{2z} = 0. \tag{5}$$

Основные задачи в общем случае движущейся пластики в несжимаемой жидкости поставлены и решены Л. И. Седовым (², ³). Задачи с учетом сжимаемости среды в случае установившихся колебаний пластинки решены М. Д. Хаскиндом (⁴, ⁵).

2. Обратимся к пространству (xzt) (6, 7). В плоскости (xt) определим области Σ и Σ' , в которых соответственно заданы условия (2) и (3). Область Σ ограничена дугой B_1B_3 (кривая L_2) и кривыми L_3 и L_4 (рис. 2).

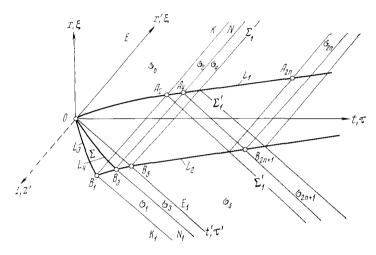


Рис. 2

Кривая L_2 изображает закон движения точки B. Кривые L_3 и L_4 изображают соответственно законы абсолютного движения точек C_1 и C_2 . Определим область Σ_1 , в которой заданы условия (4), и область Σ_1' , в которой заданы условия (5). Пары прямых OE и OE_1 , B_1K и B_1K_1 , B_3N и B_3N_1 представляют собой линии пересечения плоскости (xt) с характеристическими конусами волнового уравнения. Границами области Σ_1 являются прямая OE и кривая L_1 , изображающая закон движения точки A пластинки, а границами $\Sigma_1' - B_1K_1$ и L_2 .

Характеристические конусы с вершинами в точках O, B_1 , B_3 и в точках отражения прямых OE_1 , B_1K , B_3N от границ области Σ' разделяют пространство (xzt), в частности плоскость (xt), на характерные области с различным аналитическим видом решения задачи (рис. 2) (7).

Потенциал скорости φ представим в виде формул (7) и (8) статьи (7). Производную φ_{1z} в областях Σ_1 и Σ_1' найдем из интегральных уравнений.

3. Обозначим неизвестную производную $\varphi_{1z'}^*$ в областях $\sigma_{2n} \subseteq \Sigma_1$ через θ_{2n} и в областях $\sigma_{2n+1} \subseteq \Sigma_1'$ через ϑ_{2n+1} , $n=0,1,2,3,\ldots$

Отправляясь от условия (4), построим интегральные уравнения для функций θ_{2n} и решим их по методу, предложенному ранее (8, 9):

$$\theta_{2n}(x',t') = \frac{1}{\pi} \frac{f_{2n}[\mathcal{F}_{1}(t'),t']}{\sqrt{x'-\mathcal{F}_{1}(t')}} + \frac{1}{\pi} \int_{\mathcal{F}_{1}(t')}^{x} \frac{\partial}{\partial \xi'} [f_{2n}(\xi',t')] \frac{d\xi'}{\sqrt{x'-\xi'}}.$$
 (6)

Функция f_{2n} при n=0

$$f_{0}(x',t') = -\frac{1}{2} \int_{\chi_{1}(t')}^{\mathcal{F}_{1}(t')} A_{B}^{*}(\xi',t') \frac{d\xi'}{\sqrt{x'-\xi'}} - \frac{1}{2} \int_{\chi_{2}(t')}^{\mathcal{F}_{1}(t')} A_{H}^{*}(\xi',t') \frac{d\xi'}{\sqrt{x'-\xi'}};$$

при n=1

$$\begin{split} f_{1}(x',t') &= -\frac{1}{2} \int\limits_{\mathcal{F}_{2}^{0}(t')}^{\mathcal{F}_{1}(t')} A_{\mathrm{B}}^{*}(\xi',t') \frac{d\xi'}{\sqrt{x'-\xi'}} - \frac{1}{2} \int\limits_{\chi_{2}(t')}^{\mathcal{F}_{1}(t')} A_{\mathrm{H}}^{*}(\xi',t') \frac{d\xi'}{\sqrt{x'-\xi'}} - \\ &- \int\limits_{\chi_{1}^{\prime}}^{\mathcal{F}_{2}(t')} \vartheta_{1}(\xi',t') \frac{d\xi'}{\sqrt{x'-\xi'}} \,; \end{split}$$

 $\operatorname{npn} n \geq 2$

$$f_{2n}(x',t') = -rac{1}{2} \int\limits_{\mathcal{F}_{2}^{0}(t')}^{\mathcal{F}_{1}(t')} \left[A_{\mathrm{B}}^{*}(\xi',t') + A_{\mathrm{H}}^{*}(\xi',t')
ight] rac{d\xi'}{\sqrt{x'-\xi'}} - \\ -\sum_{i=0}^{n-2} \int\limits_{x'_{2i+1}}^{x'_{2i+3}} \vartheta_{2i+1}(\xi',t') rac{d\xi'}{\sqrt{x'-\xi'}} - \int\limits_{x'_{2n-1}}^{\mathcal{F}_{2}^{0}(t')} \vartheta_{2n-1}(\xi',t') rac{d\xi'}{\sqrt{x'-\xi'}} \,,$$

где функции $\xi' = \mathcal{F}_1(\tau')$, $\xi' = \mathcal{F}_2{}^0(\tau')$, $\xi' = \chi_1(\tau')$, $\xi' = \chi_2(\tau')$ — соответственно уравнения кривых L_1 , L_2 , L_3 , L_4 в характеристических переменных, а пределы интегрирования x'_{2j+1} — координаты точек B_{2j+1} , j=0, 1, $2,\ldots,2n-1$.

Использул условие (5) и условие на кривой L_2

$$\vartheta_{2n+1}\left[x',\mathcal{F}_{2}\left(x'\right)\right] = \begin{cases}
\frac{1}{2}A_{B}^{*}\left[x',\mathcal{F}_{2}\left(x'\right)\right], & x_{1}' < x' < x_{3}', \\
\frac{1}{2}A_{B}^{*}\left[x',\mathcal{F}_{2}\left(x'\right)\right] + \frac{1}{2}A_{H}^{*}\left[x',\mathcal{F}_{2}\left(x'\right)\right], & x' > x_{3}',
\end{cases} (7)$$

которое следует из принципа Чаплыгина — Жуковского, построим интегродифференциальные уравнения для ϑ_{2n+1} и решим (8, 9) их относительно $\vartheta_{(2n+1)x'} + \vartheta_{(2n+1)t'}$:

$$\vartheta_{(2n+1)x'}(x',t') + \vartheta_{(2n+1)t'}(x',t') = \frac{1}{\pi} \frac{f_{2n+1}[x',\mathcal{F}_{2}(x')]}{Vt' - \mathcal{F}_{2}(x')} + \frac{1}{\pi} \int_{\mathcal{F}_{1}(x')}^{t'} \frac{\partial}{\partial \tau'} [f_{2n+1}(x',\tau')] \frac{d\tau'}{Vt' - \tau'}.$$
(8)

Функция f_{2n+1} при n=0

$$f_{1}(x',t') = -\frac{1}{2} \frac{A_{B}^{*}[x',\chi_{1}^{0}(x')]}{Vt' - \chi_{1}^{0}(x')} \left\{ 1 - \frac{d\chi_{1}^{0}(x')}{dx'} \right\} - \frac{1}{2} \int_{\chi_{1}^{0}(x')}^{\mathcal{F}_{z}(x')} [A_{Bx'}^{*}(x',\tau') + A_{B\tau'}^{*}(x',\tau')] \frac{d\tau'}{Vt' - \tau'};$$

при n = 1

$$f_{3}(x',t') = f_{1}(x',t') - \frac{1}{2} \frac{A_{H}^{*}[x',\chi_{2}^{0}(x')]}{V t' - \chi_{2}^{0}(x')} \left\{ 1 - \frac{d\chi_{2}^{0}(x')}{dx'} \right\} - \frac{1}{2} \int_{\chi_{2}^{0}(x')}^{\theta_{x}(x')} [A_{Hx'}^{*}(x',\tau') + A_{H\tau'}^{*}(x',\tau')] \frac{d\tau'}{V t' - \tau'};$$

при $n \ge 2$

$$\begin{split} f_{2n+1}(x',t') &= -\frac{1}{2} \frac{A_{\rm B}^*[x',\mathcal{F}_1^0(x')] + A_{\rm H}^*[x',\mathcal{F}_1^0(x')]}{V[t'-\mathcal{F}_1^0(x')]} \left\{ 1 - \frac{d\mathcal{F}_1^0(x')}{dx'} \right\} - \\ &- \frac{1}{2} \int_{0}^{\mathcal{F}_2(x')} \left[A_{\rm Bx'}^*(x',\tau') + A_{\rm B\tau}^*(x',\tau') \right] \frac{d\tau'}{V[t'-\tau)} - \\ &- \frac{1}{2} \int_{\mathcal{F}_1^0(x')}^{\mathcal{F}_2(x')} \left[A_{\rm Hx'}^*(x',\tau') + A_{\rm H\tau'}^*(x',\tau') \right] \frac{d\tau'}{V[t'-\tau']} - \\ &- \sum_{i=0}^{n-2} \frac{\partial}{\partial t} \int_{i'_{2i}}^{i'_{2i+2}} \theta_{2i}(x',\tau') \frac{d\tau'}{V[t'-\tau']} - \frac{\partial}{\partial t} \int_{i'_{2n-4}}^{\mathcal{F}_1^0(x')} \theta_{2n-4}(x',\tau') \frac{d\tau'}{V[t'-\tau']}, \end{split}$$

где функции $\mathcal{F}_{1}{}^{0}$, \mathcal{F}_{2} , $\chi_{1}{}^{0}$, $\chi_{2}{}^{0}$ — обращения функций \mathcal{F}_{1} , $\mathcal{F}_{2}{}^{0}$, χ_{1} , χ_{2} , а пределы интегрирования t_{2j} — координаты точек A_{2j} , $j=1,2,3,\ldots,n-2$. Операция $\partial / \partial t = \partial / \partial x' + \partial / \partial t'$.

Интегрируя решения (8) по направлению, параллельному оси времени, при этом имея в виду условие (7) и условие на прямой B_1K_1 : $\varphi_{1z}=0$, найдем функции ϑ_{2n+1} .

Итак, последовательно вычисляются функции $\theta_0, \ \vartheta_1, \ \vartheta_2, \ \vartheta_3, \dots, \ \theta_{2n},$

 ϑ_{2n+1} для любого номера n.

4. Приложим, в частности, результаты к задаче о дифракции звуковой волны на жесткой пластинке. Пусть пластинка движется с дозвуковой скоростью по закону (1). На пластинку набегает звуковая волна с плоским фронтом под углом $\pi/2-\beta$ (рис. 1 статьи (6)). Потенциал скорости $\Phi=\phi_1^*+\phi_\omega^*$. Потенциал ϕ_1^* получим, если в формулах (7) и (8) статьи (7) и в найденных выше решениях (6) и (8) настоящей статьи положим функцию $A_{\rm B}^*(\xi',\tau')=A_{\rm R}^*(\xi',\tau')=-[\phi^*_{\omega z'}(\xi',z',\tau')]_{z'=0}$ и функцию $\chi_1(\tau')=\chi_2(\tau')=-\tau' {\rm tg}^2\frac{\beta}{2}$. Функция ϕ_ω^*- заданный потенциал скорости в набегающей волне.

Институт проблем механики Академии наук СССР Москва Поступило 23 V 1972

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ Л. И. Седов, Механика сплошной среды, **2**, 1970. ² Л. И. Седов, Плоские задачи гидродинамики и аэродинамики, изд. 2, 1966. ³ Л. И. Седов, УМН, в. 5 (1940). ⁴ М. Д. Хаскинд, ЖЭТФ, **16**, в. 7 (1946). ⁵ М. Д. Хаскинд, ПММ, **11**, в. 1 (1946). ⁶ Е. А. Красильщикова, ДАН, **203**, № 2 (1972). ⁷ Е. А. Красильщикова, ДАН, **208**, № 5 (1973). ⁸ Е. А. Красильщикова, Крыло конечного размаха в сжимаемом потоке, 1952. ⁹ Е. А. Кгаssilchtchikova, Method of Integral Equation in the Thin Wing Theory in a Compressible Medium, IX Congr. Intern. de Mécanique Appliques, **3**, Université de Bruxelles, 1957.