УДК 681.32.601.2:5 КИБЕРНЕТИКА И ТЕОРИЯ РЕГУЛИРОВАНИЯ

В. С. ЧУНАЕВ

ФУНКЦИИ ПЕРЕКЛЮЧЕНИЯ

(Представлено академиком С. А. Лебедевым 11 V 1972)

В предлагаемой работе определяются так называемые функции переключения и рассматривается возможность их применения для описания поведения логических схем во времени при подаче на их входы сигналов, принимающих последовательно ряд значений, и при паличии задержек у элементов.

При необходимости оперировать с рядом значений двоичной переменной x, ее удобно представлять последовательностью принимаемых ею значений

$$x^{i}, x^{2}, x^{3}, \dots, x^{i}, x^{i+1}, \dots$$
 $\dots, x^{m}, x^{m+1}.$ (1)

На основании (1) образуем новую последовательность $x^1x^2, x^2x^3, \ldots, x^ix^{i+1}, \ldots$

..., $x^m x^{m+1}$, (2) которую будем рассматривать далее как последовательность, определяющую значения некоторой четверичной переменной

$$X = X^{1}, X^{2}, \dots, X^{i}, \dots$$
 \dots, X^{m}
(например, если $x = 0, 0, 1, 1, 0, \text{ то } X = 00, 01, 11, 10)$

Пусть последовательность значений х определяется по-

Таблица 1

Таблицы истинности для конъюнкции,

дизъюнкции и инверсии четверичных переменных

Конъюнкция			Дизъюнкция			Инверсия	
X_1^i	X_2	x^{i}	$egin{array}{c} i \ 1 \end{array}$	X_2^i	X ⁱ	X_1^i	x^{i}
11 00 11 11 11 10 00 00	11 00 00 10 01 01 01 01	11 00 00 10 01 00 00 00	11 00 11 11 11 10 00 00	11 00 00 10 01 01 01 10	11 00 11 11 11 11 11 01	11 00 01 10	00 11 10 01

следовательностью значений булевой функции $f(x_1, x_2, \ldots, x_j, \ldots, x_n)$. Поставим задачу найти некоторую функцию $F(X_1, X_2, \ldots, X_j, \ldots, X_n)$, последовательность значений которой являлась бы последовательностью значений X. Искомую функцию (назовем ее функцией переключения) можно определить, пользуясь тем, что значения членов ее последовательности связаны со значениями булевой функции следующим образом:

$$\{F(X_1^i, X_2^i, \dots, X_j^i, \dots, X_n^i)\} =$$

$$= \{f(x_1^i, x_2^i, \dots, x_j^i, \dots, x_n^i) f(x_1^{i+1}, x_2^{i+1}, \dots, x_j^{i+1}, \dots, x_n^{i+1})\}.$$
(3)

Определим функции переключения для элементарных булевых функций таблицами истинности (табл. 1), значения функций в которых подсчитываются по выражению (3); примем обозначения элементарных функций переключения аналогичными обозначениям элементарных булевых функций (например, функцию переключения для конъюнкции $x = x_1 \wedge x_2$ обозначим $X = X_1 \wedge X_2$, причем

$$\{X^i\}\!=\!\{X_1^i\! \bigwedge X_2^i\}\!=\!\{x_1^i \bigwedge x_2^i \ x_1^{i+1}\! \bigwedge \! x_2^{i+1}\}).$$

Тогда функцию переключения для произвольной булевой функции, выраженной через конъюнкции, дизъюнкции и инверсии, можно получить путем формальной замены обозначений аргументов с $x_1, x_2, \ldots, x_i, \ldots, x_n$ на $X_1, X_2, \ldots, X_i, \ldots, X_n$ соответственно. Отметим, что законы преобразования функций переключения совпадают с законами преобразования булевых функций.

Используем далее функции переключения для описания поведения логических схем во времени при подаче на их входы двоичных сигналов,

значения которых изменяются во времени.

Рассмотрим двоичный сигнал \hat{x} (рис. 1a), принимающий одно из двух возможных значений в каждом интервале времени из некоторой последовательности интервалов $\{(T^{i-1}, T^i)\}$, ограниченных точками

$$\{T^i\} = T^1, T^2, \dots, T^{i-1}, T^i, \dots, T^m,$$
 (4)

и используем для описания его значений на интервалах последовательность (1):

$$x = \begin{cases} \{ (T^{i-1}, T^i) \} \\ \{ x^i \} \end{cases}.$$

Поведение сигнала в точках (4) представим следующим образом: в точке T^i сигнал может как сохранять свое значение, которое он имел на i-интервале, так и одновременно принимать новое значение, которое он булет иметь на i+1-интервале.

На основании последовательности значений (1) переменной x, представляющей значения двоичного сигнала, можно составить последовательность четверичных значений (2) и использовать ее для описания четверичного сигнала X, определяя значение X^1 в точке T^1 , X^2 —в точке T^2 и т. л.:

$$X = \begin{cases} \{T^i\} \\ \{X^i\} \end{cases},$$

или (иная форма записи)

$$X = \{X^i, T^i\}.$$

Значениям двоичного сигнала можно сопоставить четверичные значения не тольго в точках (4), но и в точках, принадлежащих интервалам (T^{i-1} ,

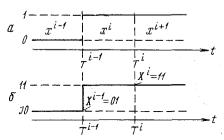


Рис. 1. Двоичный сигнал x (a) и четверичный сигнал X (b)

 T^i). Отметим также, что, для того чтобы задать четверичный сигнал, достаточно указать его значения в тех точках T^i , в которых он принимает значения 01 и 10 (точки переключения).

Рассмотрим некоторую логическую схему, имеющую n входов и 1 выход. Пусть на входы такой схемы подан набор двоичных сигналов $x_1, x_2, \ldots, x_j, \ldots, x_n$, так что набор значений $x_1^1, x_2^1, \ldots, x_j^1, \ldots, x_n^1$ подается на схему на интервале. огра-

ниченном справа точкой T^1 , набор значений $x_1^2, x_2^2, \ldots, x_j^2, \ldots, x_s^2$ на интервале (T^1, T^2) и т. д. Пусть выходная функция логической схемы $f(x_1, x_2, \ldots, x_j, \ldots, x_n)$ такова, что значение выходного сигнала схемы в любой момент времени (из интервалов (T^{i-1}, T^i)) определяется как значение булевой функции, аргументами которой являются двоичные значения набора входных сигналов, взятых в тот же момент времени (схема не содержит задержек):

$$x = \begin{cases} \{ (T^{i-1}, T^i) \} \\ \{ f(x_1^i, x_2^i, \dots, x_j^i, \dots, x_n^i) \}. \end{cases}$$

Если двоичные значения выходного сигнала схемы связаны с двоичными значениями ее входных сигналов булевой функцией, то очевидно, что четверичные значения выходного сигнала X связаны с четверичными значениями входных сигналов $X_1, X_2, \ldots, X_i, \ldots, X_n$ функцией переключения булевой функции, приписываемой схеме, т. е. выходная функция схемы будет

 $X = F(X_1, X_2, \ldots, X_i, X_n),$

причем

$$\{X^{i}, T^{i}\} = \{F(X_{1}^{i}, X_{2}^{i}, \dots, X_{j}^{i}, \dots, X_{n}^{i}), (T^{i})\}.$$
 (5)

Если у сигналов, подаваемых на логическую схему, точки переключения не совпадают во времени, то, для того чтобы в этом случае с помощью функции переключения определить последовательность переключения выходного сигнала схемы, достаточно описать значения сигналов в их объединенных точках переключения

$$T = \{T^i\} = \{T_1^i\} \cup \{T_2^i\} \cup \ldots \cup \{T_j^i\} \cup \ldots \cup \{T_n^i\}$$
 (6)

и по их значениям найти значения функции переключения (5) в этих точках. Переключения выходного сигнала схемы могут происходить только в точках последовательности (6), т. е. в точках переключения входных сигналов и только в них.

Рассмотрим преобразование: задержка (сдвиг) сигнала $X = \{X^i, T^i\}$

$$X^{\tau} = \{X^{i}, (T^{i} + \tau)\}.$$

Подобную операцию будем приписывать схеме «задержка», у которой X является входным сигналом, X^{τ} —выходным, τ —величина задержки (сдвига). Укажем, что

$$[X^{\tau_1}]^{\tau_2} = X^{\tau_1 + \tau_2},\tag{7}$$

$$[F(X_1, X_2, \dots, X_j, \dots, X_n)]^{\tau} = F(X_1^{\tau}, X_2^{\tau}, \dots, X_j^{\tau}, \dots, X_n^{\tau}).$$
 (8)

Используя правила (7) и (8), функцию, представленную через дизъюнкции, конъюнкции и инверсии, аргументы и составляющие элементар-

ные функции которой подвергнуты преобразованиям задержки, можно привести к дизъюнктивной нормальной форме (д.н.ф.) (в д.н.ф. операции задержки производятся непосредственно над аргументами): $\Phi(X_1^{\tau_1}, X_2^{\tau_2}, \dots$

 $\ldots, X^{\tau_{\xi}}, \ldots, X_{k}^{\tau_{k}}).$

Для того, чтобы найти значения функции переключения, представленной подобным образом, достаточно описать значения аргументов функции в их объединенных точках переключения

$$T = \{T^i\} = \{T_1^i + \tau_1\} \cup \{T_2^i + \tau_2\} \cup \ldots \cup \{T_{\xi}^i + \tau_{\xi}\} \cup \ldots \cup \{T_h^i + \tau_h\}$$

и по их значениям найти значения функции в этих точках. Если



Рис. 2. Комбипационная схема (a) и ее эквивалентная схема (δ)

функция $X = F(X_1^{\tau_1}, X_2^{\tau_2}, \dots, X_j^{\tau_l}, \dots, X_{n-1}^{\tau_{n-1}}, X^{\tau_n})$ описывает схему, выходной сигнал X которой является также одним из ее входных сигналов, то последовательность объединенных точек переключения функции включает как точки переключения внешних входных сигналов, сдвинутые на соответствующие величины сдвига, так и точки переключения выходного сигнала, сдвигаемые каждый раз на величину τ_n .

Возможность аналитического описания поведения логических схем во времени с помощью функций переключений можно эффективно использовать для анализа комбинационных схем следующим образом. Будем интересоваться значениями сигнала, возникающего в некоторой точке комбинационной схемы, состоящей из элементов, обладающих задержками. Для этого составим (двигаясь от исследуемой точки к входам схемы) функцию переключения анализируемой части схемы и приведем ее к д.н.ф. Так, для схемы на рис. 2a (опуская промежуточные преобразования) можно получить

$$X = X_1^{\tau_1 + \tau_b} \wedge X_2^{\tau_2 + \tau_b} \vee [\overline{X_1^{\tau_4 + \tau_6}}] \vee [\overline{X_3^{\tau_4 + \tau_6}}]$$

$$\tag{9}$$

и найти затем значения выходного сигнала по заданным во времени значениям входных сигналов. Сравнивая значения входных и выходных сигналов, можно судить, в частности, о длительности «переходного логического процесса», возникающего в схеме вследствие состязания сигналов в ее цепях.

Рассматривая (9), заметим, что произвольной комбинационной схеме можно поставить в соответствие некоторую эквивалентную схему (пример на рис. 26), в которой задержки элементов выделены в цепочки, соответствующие цепям анализируемой схемы, по которым сигналы от ее входов двигаются к ее выходу; задержки цепочек соответствуют длительностям прохождения сигналов по цепям схемы. Указанная процедура выделения в комбинационных схемах цепей движения сигналов оказывается полезной для анализа критических путей в схемах, проводимого при поиске оптимальной частоты смены комбинации сигналов в устройствах дискретных автоматов. Отметим также, что по функции переключения схемы, представленной в д.н.ф., можно определить тестовые последовательности входных сигналов, необходимые для проверки задержек цепи схем.

Институт точной механики и вычислительной техники Академии наук СССР Москва Поступило 17 II 1972