УДК 517.9 *МАТЕМАТИКА*

М. Г. КРЕЙН, П. Я. НУДЕЛЬМАН

О НЕКОТОРЫХ НОВЫХ ЗАДАЧАХ ДЛЯ ФУНКЦИЙ КЛАССА ХАРДИ И КОНТИНУАЛЬНЫХ СЕМЕЙСТВАХ ФУНКЦИЙ С ДВОЙНОЙ ОРТОГОНАЛЬНОСТЬЮ

(Представлено академиком А. Н. Колмогоровым 19 VI 1972)

Через $\hat{\mathbf{L}}_2(a,b)$, $-\infty \leqslant a < b \leqslant \infty$, обозначается вещественное гильбертово пространство, состоящее из всех вещественных функций комплексного пространства $\mathbf{L}_2(a,b)$. Через $\mathscr F$ обозначается пенормированный оператор Фурье — Планшереля в $\mathbf{L}_2(-\infty,\infty)$ точнее, для $f \in \mathbf{L}_2(-\infty,\infty)$

$$\left(\mathcal{F}f\right)\left(\,\mathfrak{D}\right) = \int\limits_{-\infty}^{\infty} e^{-i\omega t} f\left(t\right) dt \, \left(= \underset{N', \, N' \to \infty}{1. \, \text{i. m}} \int\limits_{-N'}^{N} e^{-i\omega t} f\left(t\right) dt\right).$$

Всякое $L_2(a, b)$ (когда хотя бы одно из чисел a, b конечно) рассматривается как подпространство в $L_2(-\infty, \infty)$, состоящее из соответствующим образом усеченных функций. Через H (H) обозначается подпространство в $L_2(-\infty, \infty)$, на которое оператор $\mathscr F$ отображает $L_2(0, \infty)$ ($L_2(0, \infty)$). Таким образом, $F (\equiv H)$ припадлежит \widehat{H} точно тогда, когда F — эрмитова функция, т. е. $F(-\infty) = \overline{F(\omega)}$ почти всюду на оси.

Отправная задача. Задана некоторая эрмитова функция $F \in \mathbf{L}_2(-1,1)$ и число ε ($0 < \varepsilon \le ||F||/2\pi$). Требуется найти $g \in \hat{\mathbf{L}}_2(0,\infty)$, имеющее наименьшую норму ||g||, при условии, что

$$\frac{1}{2\pi} \int_{-1}^{1} |F(\omega) - G(\omega)|^2 d\omega \leqslant \varepsilon^2, \quad G = \mathcal{F}(g). \tag{1}$$

Легко обнаруживается, что задача имеет одно и только одно решение (обозначаемое в дальнейшем g_{ϵ}), причем оно определяется из интегрального уравнения

$$\mu g(t) + \int_{0}^{\infty} \frac{\sin(t-s)}{\pi(t-s)} g(s) ds = f(t), \quad 0 \leq t < \infty, \tag{2}$$

где $f = \mathcal{F}^{-1}(F)$, а $\mu = \mu(\epsilon)$ — некоторая положительная функция аргумента ϵ . Эта функция в свою очередь определяется из уравнения (16); оказывается она монотонно стремится к нулю при $\epsilon \downarrow 0$ и, более того, $\mu = -\sqrt{2\pi} \, \epsilon / \|F\| + O(\epsilon^2)$.

2. Наши выводы существенно опираются на результаты статьи (1). В этой статье, в частности, показано, что функции

$$\chi_{\tau}(\omega) = \chi(\omega, \tau) = \frac{1}{\pi} \frac{1}{\sqrt{(1-\tau^2)(1-\omega^2)}} \exp\left(\frac{i}{2\pi} \ln \frac{1+\omega}{1-\omega} \ln \frac{1+\tau}{1-\tau}\right)$$
(3)

аргумента ω и параметра τ , $-1 < \omega_1 \tau < 1$, образуют в $\mathbf{L}_2(-1,1)$ полную ортогональную систему обобщенных функций, нормированных к δ -функции.

Отсюда следует, что вещественные функции

$$\varphi(t;\lambda) = \int_{-1}^{1} \chi(\omega,\tau) e^{i\omega t} d\omega, \quad \tau = \operatorname{th} \pi \lambda, \quad -\infty < t, \quad \lambda < \infty, \quad (4)$$

образуют полную ортогональную систему обобщенных функций в пространстве $\mathbf{B}_1 (\subset \mathbf{L}_2(-\infty,\infty))$ *. Точнее, для любой функции $f \in B_1$ сущест вует в определенном смысле интеграл

$$F_{\varphi}(\lambda) = \int_{-\infty}^{\infty} f(t) \, \varphi(t; \lambda) \, dt, \tag{5}$$

при этом соответствие $f\to F_{\phi}$ будет унитарным отображением всего **B** на всё $\mathbf{L}_2(-\infty,\infty;p)$ с весом $p(\lambda)=1$ / $(2\operatorname{ch}^2\pi\lambda)$, так что

$$\int_{-\infty}^{\infty} |f(t)|^2 dt = \frac{1}{2} |F_{\varphi}(\lambda)|^2 \frac{d\lambda}{\cosh^2 \pi \lambda}, \qquad (0)$$

и будет иметь место соответствующая формула обращения.

Функции φ связаны с определенной серией функций Уиттекер $M_{h,m}(z)$ (см. (2), стр. 159), а именно: $\varphi(t;\lambda) = M_{-i\lambda,\,0}(2it) / (2it)^{1/2}$. Функция $\varphi(t;\lambda)$, будучи целой функцией, является единственным регулярных решением граничной задачи

$$\frac{d}{dt}\left(t\frac{d\varphi}{dt}\right) + t\varphi + 2\lambda\varphi = 0, \quad \varphi(0;\lambda) = 1.$$

Если рассматривать ограничение функций $\varphi(t;\lambda)$, $-\infty < \lambda < \infty$, и полуось $0 \le t < \infty$ как фундаментальные функции граничной сингулярно задачи (7) на этой полуоси, то по общей теории Г. Вейля (см., например (3)) эти функции должны порождать обобщенное преобразование Фурь с некоторым спектральным весом. Действительно, оказывается, дл $f \in \mathbf{L}_2(0,\infty)$ имеет определенный смысл интеграл

$$\tilde{f}_{\varphi}(\lambda) = \int_{0}^{\infty} f(t) \, \varphi(t; \lambda) \, dt,$$
 (

и соответственно $f \to \tilde{f}_{\varphi}$ унитарно отображает все $\mathbf{L}_2(0, \infty)$ на все $\mathbf{L}_2(-\infty, \infty; q)$ с весом $q(\lambda) = 1 + \operatorname{th} \pi \lambda$, так что

$$\int_{0}^{\infty} |f(t)|^{2} dt = \int_{-\infty}^{\infty} |\tilde{f}_{\varphi}(\lambda)|^{2} (1 + \operatorname{th} \pi \lambda) d\lambda,$$

и, стало быть, имеет место формула обращения **

$$f(t) = \int_{-\infty}^{\infty} \tilde{f}_{\varphi}(\lambda) \varphi(t; \lambda) (1 + \operatorname{th} \pi \lambda) d\lambda. \tag{10}$$

3. Существенно, что ограничение функций $\varphi(t;\lambda)$ на $(0,\infty)$ дает полную систему обобщенных фундаментальных функций самосопряженного оператора K, задаваемого интегралом, стоящим в левой части (2)

^{*} Через \mathbf{B}_1 обозначается подпространство всех целых функций из $\mathbf{L}_2(-\infty, \infty)$ степени ≤ 1 ; иначе, \mathbf{B}_1 можно определить как подпространство, на которое операто \mathcal{F}^{-1} отображает $\mathbf{L}_2(-1,1)$ ($\subset \mathbf{L}_2(-\infty,\infty)$).

** Разумеется, в формулах (5), (8) и (10) сходимость интегралов следует пони

^{**} Разумеется, в формулах (5), (8) и (10) сходимость интегралов следует понимать в смысле сходимости в метрике соответствующего пространства $\mathbf{L}_2(-\infty,\infty; p$ $\mathbf{L}_2(-\infty,\infty; q)$ и $\mathbf{L}_2(0,\infty)$. Авторы обязаны Г. Я. Попову указанием на то, что формулы обращения (8) и (10) известны и приведены в числе прочих (в друго записи) в (4), стр. 274.

а именно:

$$\int_{a}^{\infty} \frac{\sin(t-s)}{\pi(t-s)} \varphi(s;\lambda) ds = \frac{1-\ln \pi \lambda}{2} \varphi(t;\lambda), \ 0 \leq t < \infty.$$
 (11)

Это обстоятельство позволяет получить решение g уравнения (2) при любом $f \in L_2(0, \infty)$ и комплексном $-\mu \notin (0, 1)$ * по формуле

$$g(t) = \int_{0}^{\infty} \Gamma(t, s; -\mu) f(s) ds, \qquad (12)$$

где

$$\Gamma(t,s;-\mu) = 2 \int_{-\infty}^{\infty} \frac{\varphi(t;\lambda) \varphi(s;\lambda) (1 + \tan \lambda)}{1 - \tan \lambda + 2\mu} d\lambda.$$
 (13)

Для самого ядра оператора К получается разложение

$$\frac{\sin(t-s)}{\pi(t-s)} = \frac{1}{2} \int_{-\infty}^{\infty} \frac{\varphi(s;\lambda) \varphi(t;\lambda)}{\cosh^2 \pi \lambda} d\lambda, \quad 0 \leqslant s, t < \infty.$$
 (14)

Разложения (13) и (14) сходятся равномерно в любом конечном квадрате ($0 \le s, t < a; a < \infty$) и сохраняют это свойство при дифференцировании по s и t любое число раз.

4. Для любого $F \in \mathbf{L}_2(-1,1)$ положим $\check{F}(x) = F\left(\operatorname{th}\frac{x}{2}\right) / \sqrt{2}\operatorname{ch}\frac{x}{2}$ ($\in \mathbf{L}_2(-\infty,\infty)$ и $\Phi_F = \mathcal{F}(\check{F}) / \sqrt{2\pi}$. Для эрмитова $F(F(-\omega) = F(\omega))$ функция $\Phi_F(\lambda)$ будет вещественной. Так как в уравнении (2) для отправной задачи $f = \mathcal{F}^{-1}(F) \in \mathbf{B}_1$ и стоящий в левой части интеграл также дает целую функцию из \mathbf{B}_1 , то и решение задачи $g_\varepsilon \in \mathbf{B}_1$. Формулы (12) и (13) позволяют получить g_ε в виде интеграла в пределах от $-\infty$ до ∞ от произведения $\Phi_F(\lambda) \varphi(t;\lambda)$ с весом $(1-\operatorname{th}\pi\lambda) / (1-\operatorname{th}\pi\lambda + 2\mu)$, после чего легко получается, что

$$\int_{0}^{\infty} g_{\varepsilon}^{2}(t) dt = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{(1 - \ln \pi \lambda) \, \Phi_{F}^{2}(\lambda) \, d\lambda}{(1 - \ln \pi \lambda + 2\mu)^{2}} \, . \tag{15}$$

Найдя g_{ε} , нетрудно уже получить соответствующее выражение для $G_{\varepsilon} = \mathcal{F}(g_{\varepsilon})$. При подстановке $G = G_{\varepsilon}$ в (1) получается знак равенства и соответствующее вычисление левой части (1) приводит к соотношению

$$\frac{2\mu^2}{\pi} \int_{-\infty}^{\infty} \frac{\Phi_F^2(\lambda) d\lambda}{1 - \ln \pi \lambda + 2\mu} = \epsilon^2, \tag{16}$$

из которого и определяется как функция в.

Теорема. Для того чтобы заданная функция $F \in L_2(-1,1)$ совпадала почти всюду на (-1,1) с некоторой функцией $G_0 \in \mathbf{H}$, необходимо и достаточно, чтобы $\exp(\pi\lambda)\Phi_F(\lambda) \in L_2(-\infty,\infty)$.

При выполнении этого условия голоморфная в нижней полуплоскости функция класса Харди $G(\zeta)$ ($\zeta = \omega + i\sigma$, $\sigma < 0$), граничные значения которой для $\omega \in [-1,1]$ дают $F(\omega)$, находится по формуле

$$G(\zeta) = \frac{1}{V\pi (1-\zeta^2)} \int_{-\infty}^{\infty} \Phi_F(\lambda) \exp\left(i\lambda \ln \frac{1+\zeta}{1-\zeta}\right) d\lambda, \quad \text{Im } \zeta < 0.$$
 (17)

^{*} Сегмент [0, 1] составляет весь спектр (являющийся простым и непрерывным) оператора К. Этот попутно получаемый нами факт специально доказывался в статье (5); там же указано, что он следует также из результатов статьи (6).

Фигурирующие в правой части голоморфные в нижней полуплоскости ветви $\ln\left[\left(1+\xi\right)/\left(1-\xi\right)\right]$ и $\sqrt{1-\xi^2}$ выделяются условиями, что при $\xi \to \omega, -1 < \omega < 1$, первая стремится к вещественному, а вторая — к положительному числу.

Квадрат нормы $G_0(\omega) = G(\omega - i0)$ находится по формуле

$$\int_{-\infty}^{\infty} |G_{\rm d}(\omega)|^2 d\omega = 2 \int_{-\infty}^{\infty} \frac{|\Phi_F(\lambda)|^2 d\lambda}{1 - \tan \lambda}. \tag{18}$$

Поясним, что указанный в теореме критерий эквивалентен условию конечности интеграла, стоящего в правой части (18).

Для случая, когда $F(\omega) = \overline{F(-\omega)}$ ($\subseteq \mathbf{L}_2(-1,1)$), последнее условне эквивалентно конечности предела $\|g_{\varepsilon}\|$ при $\varepsilon \downarrow 0$.

Отметим, что отправная задача этой статьи навеяна результатами статьи (7).

Если в интегральном уравнении (2) заменить верхний предел ∞ конечным числом a (>0) и рассматривать его для функций $g, f \in \mathbf{L}_2(0, a)$, то мы получим уравнение, теории и приложениям которого посвящена общирная литература (см. ($^{8-10}$), а также заметки (11 , 12)). В связи с этим уравнением была получена счетная система функций с двойной ортогональностью. В отличие от этой дискретной системы (двойственной себе в смысле преобразования Фурье) континуальная система функций $\varphi(t;\lambda)$, $-\infty < \lambda < \infty$, связана преобразованием Фурье с некоторой второй системой функций с двойной ортогональностью, притом уже в интервалах (-1, 1) и ($-\infty$, ∞). Этой системой является система функций $\chi_{\tau}(\omega)$, $-1 < \tau < 1$, соответствующим образом экстранолированных на всю ось ($-\infty < \omega < \infty$).

Примечание при корректуре. После того, как настоящая заметка была передана в печать, авторы узнали, благодаря Д. З. Арову, о работе (13), в которой также дано решение (другим способом и в другой форме) задачи о приложении с конечного интервала функции класса Харди.

Одесский инженерно-строительный институт Одесский электротехнический институт связи Поступило 6 VI 1972

ПИТИРОВАННАЯ ЛИТЕРАТУРА

¹ W. Корреlman, J. D. Pincus, Math. Zs., 71, H. 4, 399 (1959). ² E. T. Уиттекер, Г. Н. Ватсон, Курс современного анализа, ч. II, 1934. ³ Б. М. Левитан, И. С. Саргсян, Введение в спектральную теорию, «Наука», 1970. ⁴ Г. Бейтман, А. Эрдейн, Высшие трансцендентные функции, 1, «Наука», 1965. ⁵ Н. J. Landau, Н. О. Pollak, Bull. Syst. Techn. J., 41, № 4 (1963). ⁶ Н. Widom, Illinois J. Math., 40, № 1, 88 (1960). ⁷ П. Я. Нудельман, Радиотехника, 26, № 9, 49 (1971). ⁸ D. Söepian, H. O. Pollak, Bell. Syst. Techn. J., 40, № 1, 43 (1961). ⁹ Н. J. Landau, Н. О. Pollak, Bell. Syst. Techn. J., 40, № 1, 65 (1961). ¹⁰ Функции с двойной ортогональностью (перевод с англ.), Советское радио, М., 1971. ¹¹ П. Я. Нудельман, Радиотехника и электротехника, 4, № 2, 193 (1961). ¹² А. Я. Нудельман, Радиотехника и электротехника, 5, № 3, 622 (1970). ¹³ А. Steiner, Ann. Acad. Sci. Fennicae Ser. A, I, Mathematica, 459, 1 (1970).