УДК 541.4 + 669.094.1 + 661.865

ХИМИЯ

С. А. ЛЕОНТЬЕВ, Ю. П. ВОРОБЬЕВ, А. М. БАЛБАШОВ, А. Н. МЕНЬ, А. Я. ЧЕРВОНЕНКИС, член-корреспондент АН СССР Г. И. ЧУФАРОВ

ТЕРМОДИНАМИЧЕСКИЕ СВОЙСТВА ОРТОФЕРРИТОВ РЕДКОЗЕМЕЛЬНЫХ ЭЛЕМЕНТОВ И ИТТРИЯ

В настоящее время объектами всестороннего исследования стали соединения редкоземельных элементов. Поиск новых материалов для современной техники выдвинул такие соединения в ряд наиболее важных и интересных с точки зрения многих физических и физико-химических свойств. Примером могут служить ферриты р.з.э., в частности ортоферриты с общей формулой RFeO₃ (R — ион редкоземельного элемента или иттрия). Лазерная техника, техника с.в.ч., элементы памяти счетно-решающих устройств — вот основные области применения этих соединений, специальные характеристики которых в значительной степени определяются условиями синтеза, главным образом составом газовой фазы, довольно сильно влияющей, в свою очередь, на степень нестехиометрии ферритов. Важной характеристикой, с этой точки зрения, является величина равновесного давления кислорода (P_{O_2}) над RFeO₃ в процессе получения как поликристал-

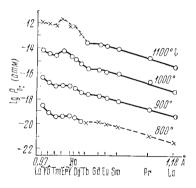


Рис. 1. Изотермы зависимости значений логарифмов равновесного давления кислорода от величины ионных радиусов трехвалентных редкоземельных ионов для ортоферритов р.з.э.: пунктир данные. полученные экстраполяцией

лических, так и в еще большей степени монокристаллических образцов ортоферритов. Следует отметить, что исследований в этой области нами в литературе не обнаружено.

Кроме этого, интересно проследить изменение характеристик материалов на основе р.з.э. в ряду лантанондов. Ортоферриты, у которых кристаллическая структура сохраняется во всей группе редкоземельных элементов, а изменяется только степень искажения перовскитной структуры $\binom{1}{2}$, могут служить объектом для построения теории кристаллического поля, магнитных свойств и других теоретических моделей.

Ранее нами были проведены исследования термодинамических свойств ортоферритов гольмия, гадолиния и европия (3). В настоящей работе мы продолжили изучение процессов восстановления для остальных членов ряда р.з.э., входящих в соединение RFeO₃ (R—редкоземельные трехвалентные поны лантаноидов, за исключением Ce, Nd, Pm и Y).

Синтез монокристаллических образцов проводился методом бестигельной зонной плавки с оптическим нагревом на воздухе, однофазность ортоферритов контролировалась методом рентгеновского анализа в камере РКД диаметром 57,3 мм на Сг K_{α} -излучения. Параметры орторомбических ячеек

Температурные зависимости равновесного давления кислорода и значения $\lg P_{\mathbf{O}_2}$ и константы равновесия (K_p) реакции (1) для исследованных температур

$\mathrm{RFeO_3}$	$\lg P_{ ext{O}_2}/T^{\circ}, ext{K}$	T, °C	$\lg P_{{ m O}_2}$	$K_{\mathbf{p}}$
r P 0	/2 /2 0 0200 m	000	$-19,43\pm0,00$	0.00%
LaFeO ₃	-43,13+0,0202 T	900 1000	$-19,43\pm0,00$ $-17,41\pm0,00$	0,005
		1100	-15,39+0,00	0,019
PrFeO ₃	-42,96+0,0206 T	900 1000	$-18,81\pm0,00$ $-16,75\pm0,01$	0,015 0,023
		1100	$-14,69\pm0,01$	0,058
SmFeO_3	-42,22+0,0206 T	900	$-18,09\pm0,01$	0,045
		1000	$-16,04\pm0,02$	0,083
EuFeO ₃	$-42,19\pm0,0207$ T	1100 900	$-13,98\pm0,03 \ -17,91\pm0,02$	$0,21 \\ 0,07$
nar cos	2=,10,0,0=0,1	1000	-15,84+0,02	0,11
O IE O	74 04 L 0 0000 M	1100	-13,78+0.04	0,30
$\mathrm{GdFeO_3}$	-41,91+0,0206 T	900 1000	$ \begin{array}{c c} -17,69\pm0,02 \\ -15,63\pm0,03 \end{array} $	0,09
		1100 1100	$-13,56\pm0,05$	0,10
$\mathrm{TbFeO_3}$	-41,36+0,0203 T	900	-17.60+0.03	0,09
		1000 1100	$\begin{array}{c c} -15,57\pm0,03 \\ -13,54\pm0,04 \end{array}$	0,16
DvFeO ₃	-44,42+0.0230 T	800	$-19,74\pm0,04$ $-19,74\pm0,03$	0,39
3 0		900	-17,44+0,03	0,13
HoFeO ₃	/# 20 0 02/0 T	1000	$-15,19\pm0,05$	0,32
noreO3	-45,20+0,0240 T	800 900	$-19,45\pm0,03$ $-17,05\pm0,05$	$0,17 \\ 0,28$
		1000	-14.65 ± 0.08	0.87
ErFeO₃	-46,69 + 0,0255 T	800	-19,35+0.04	0,22
		900	$\begin{bmatrix} -16,80\pm0,06\\ -14,25\pm0,14 \end{bmatrix}$	0,45 1,75
${ m TmFeO_3}$	-45,17+0,0240 T	800	$-19,30\pm0,04$	0.18
	' ' '	900	-16.88 ± 0.05	0,31
$YbFeO_3$	$-44,63 \pm 0.0238 \ T$	1000 800	$\begin{array}{c c} -14,77\pm0,09 \\ -19,09\pm0,06 \end{array}$	0,93
1 11 10 13	44,054-0,0258 1	900	$-19,09\pm0,06$ $-16,71\pm0,07$	0,29 0,48
		1000	-14.33 ± 0.12	1,34
LuFeO ₃	-41,62-0,0216 T	800	$-18,45\pm0,11$	0,96
		900 1000	$-16,29\pm0,11$ $-14,12\pm0,17$	$\begin{array}{c c} 1,09 \\ 2,20 \end{array}$
$YFeO_3$	-41,64-0,0210 T	800	$-19,11\pm0.05$	0,32
		900	$-17,01\pm0,06$	0,38
	I	1000	$-45,62\pm0,09$	0,91

синтезпрованных соединений удовлетворительно согласуются с данными литературных источников (¹,²). Восстановление образцов и метод расчета аналогичны описанным в предыдущей работе (³). Измерение равновесного давления кислорода проводилось при температурах 800, 900, 1000 и 1100° С.

На основании полученных данных были рассчитаны температурные зависимости величины равновесного парциального давления кислорода для всех указанных выше ортоферритов (табл. 1). Как и ожидалось, механизм восстановления одинаков для всех членов ряда ортоферритов и описывается реакцией

RFeO₃ +
$$^{3}/_{2}$$
H₂=Fe + $^{1}/_{2}$ R₂O₃ + $^{3}/_{2}$ H₂O. (1)

Наличие находящихся в равновесии только трех твердых фаз (RFeO₃, R_2O_3 и Fe) подтверждалось рентгенофазовым анализом и постоянством величины P_{O_2} при всех степенях восстановления.

На рис. 1 приведены изотермы зависимости значений логарифмов равновесного давления кислорода от величины ионных радиусов трехвалент-

Таблица 2 Температурные зависимости термодинамических потенциалов, энтальний и энтропий реакции (1) (A=-377472)

RFeO_3	$\Delta \overline{G}$, дж/моль	$\Delta \overline{m{H}}$, дж/моль	$\Delta \overline{S}$, дж/моль
LaFeO ₃ PrFeO ₃ SmFeO ₃ EuFeO ₃ GdFeO ₃ Tb+cO ₃ DyFeO ₃ HoFeO ₃ ErFeO ₃ TmFeO ₃ YbFeO ₃ YFeO ₃	$ \begin{array}{c} A + 706\ T - 0,29\ T^2 \\ A + 704\ T - 0,30\ T^2 \\ A + 697\ T - 0,30\ T^2 \\ A + 692\ T - 0,30\ T^2 \\ A + 689\ T - 0,30\ T^2 \\ A + 681\ T - 0,29\ T^2 \\ A + 724\ T - 0,33\ T^2 \\ A + 735\ T - 0,35\ T^2 \\ A + 757\ T - 0,37\ T^2 \\ A + 727\ T - 0,34\ T^2 \\ A + 684\ T - 0,31\ T^2 \\ A + 684\ T - 0,31\ T^2 \\ A + 685\ T - 0,30\ T^2 \end{array} $	$ \begin{vmatrix} A+0,29 & T^2 \\ A+0,30 & T^2 \\ A+0,30 & T^2 \\ A+0,30 & T^2 \\ A+0,30 & T^2 \\ A+0,33 & T^2 \\ A+0,33 & T^2 \\ A+0,33 & T^2 \\ A+0,35 & T^2 \\ A+0,34 & T^2 \\ A+0,34 & T^2 \\ A+0,34 & T^2 \\ A+0,30 & T^2 \end{vmatrix} $	$\begin{array}{c} -706+0,58\ T\\ -704+0,60\ T\\ -697+0,60\ T\\ -692+0,60\ T\\ -689+0,60\ T\\ -684+0,58\ T\\ -724+0,66\ T\\ -735+0,70\ T\\ -757+0,74\ T\\ -735+0,68\ T\\ -727+0,68\ T\\ -684+0,62\ T\\ -685+0,60\ T\end{array}$

ных редкоземельных ионов и Y^{3+} , взятых из расчета восьмерной координации (2 , 4). Как видно, P_{0_2} в ряду ортоферритов увеличивается при движении от La к Lu. Линейность изотерм нарушается после $GdFeO_3$ и при высоких температурах (1000 и 1100°) наблюдается небольшой пик у $ErFeO_3$. Получить надежные данные для ортоферритов от La до Tb при 800° и от Dy до Lu при 1100° не удалось, поэтому значения $lg\ P_{0_2}$ в этих областях, обозначенные на рис. 1 пуктирными линиями, получены путем экстраполяции по найденным температурным зависимостям (табл. 1).

По известным термодинамическим соотношениям были вычислены температурные зависимости изобарно-изотермического потенциала, энтальпии и энтропии реакции (1) (табл. 2).

Институт металлургии Уральского научного центра Академии наук СССР Свердловск Поступило 7 VIII 1972

Московский энергетический институт

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ S. Geller, E. A. Wood, Acta crystallogr., 9, 7 (1956). ² M. Marezio, J. P. Remeika, P. D. Dernier, Acta Crystallogr., **B26**, № 12, 2008 (1970). ³ Ю. П. Воробьев, С. А. Леонтьев и др., ДАН, 204, № 3, 619 (1972). ⁴ R. D. Shannon, C. T. Prewitt, Acta crystallogr., **B25**, № 5, 925 (1969).