УДК 517.91

MATEMATHKA

Л. М. ЛЕРМАН, Л. П. ШИЛЬНИКОВ

О КЛАССИФИКАЦИИ ГРУБЫХ НЕАВТОНОМНЫХ СИСТЕМ ВТОРОГО ПОРЯДКА С КОНЕЧНЫМ ЧИСЛОМ ЯЧЕЕК

(Представлено академиком И.Г. Петровским 1 VI 1972)

Одной из основных задач качественной теории дифференциальных уравнений является выяснение основных элементов, определяющих структуру разбиения фазового пространства на траектории. Для двумерных систем на плоскости эта задача была полностью решена в работах А. А. Андронова и Л. С. Понтрягина, Е. А. Леонтович и А. Г. Майера. В грубом случае (1) такими элементами являлись траектории, пеустойчивые по Ляпунову, а в общем — орбитно-неустойчивые. На основе понятия орбитно-неустойчивой траектории Е. А. Леонтович и А. Г. Майер указали схему — полный топологический инвариант двумерных систем. В общем случае многомерных систем эта задача не решена до сих пор. Эта задача не решена и для неавтономных систем второго порядка, хотя на необходимость ее решения, а также распространения идеи грубости на неавтономные системы указывали А. А. Андронов и Е. А. Леонтович (см. (2)).

В настоящей работе эта задача решается для одного класса неавтономных систем. В основе наших рассуждений лежит важное понятие особого решения, роль которого во многом аналогична состояниям равновесия автономных систем и периодическим движениям систем с правой частью, периодически зависящей от времени (об особых траекториях автономных систем см. (3)).

Определение 1. Неавтономной динамической системой (н.д.с.) φ_{τ}^{t} на C^{∞} гладком компактном многообразии M без края называется непрерывное двухпараметрическое семейство C^{r} -диффеоморфизмов $(r \ge 1)$ многообразия M, удовлетворяющее свойствам:

1) $\varphi_t^t = \mathrm{id} - \mathrm{тож}$ дественное отображение, 2) $\varphi_\tau^t \circ \varphi_s^\tau = \varphi_s^t$ (свойство супернозиции), 3) при фиксированном τ отображение $R^t \times M \to M$, порож-

денное φ_{τ}^{t} , есть C^{s} -отображение, $1 \leq s \leq r$.

Пусть т фиксировано. Тогда можно определить векторное поле $X_{\tau}(x) = \frac{d}{dt} [\phi_{\tau}^{\ t}(x)]|_{t=\tau}$. Получаем (по меньшей мере непрерывное) однопараметрическое семейство C^{τ} векторных полей на M. Будем называть его неавтономным векторным полем (верно и обратное: на компактном M каждому неавтономному векторному полю соответствует н.д.с.). Считая, что в пространстве векторных полей на M введена C^{τ} -норма $|\cdot|$, множество неавтономных векторных полей (н.в.п.) можно сделать метрическим (и даже банаховым) пространством, вводя метрику между такими полями X_t , Y_t по формуле $l(X_t, Y_t) = \sup |X_t - Y_t|$, \sup берется по $t \in \mathbb{R}^t$. Ниже будем считать, что все н.в.п. X_t ограничены, τ . е. $l(X_t, 0) \leqslant K$, K > 0.

Будем рассматривать н.д.с. в фазовом пространстве $R^1 \times M$. Через каждую точку (τ, x) этого пространства проходит единственная гладкая кривая $(t, \phi_{\tau}^{\ t}(x))$, которую будем называть решением н.д.с., проходящим через (τ, x) . Часто будем $\phi_{\tau}^{\ t}$ рассматривать как диффеоморфизм $M_{\tau} \to M_{t}$,

 $M_t = \{t\} \times M$.

Определение 2. Н.д.с. X, X' эквивалентны, если существует эквиморфизм * $h: R^1 \times M \to R^1 \times M$, переводящий решения системы Xв решения системы X', причем каждое M_t инвариантно относительно t.

Определение 3. Н.д.с. Х называется грубой, если существует $\sigma > 0$, что любое н.в.п. Y_t из σ -окрестности векторного поля X_t , соответствующего X, порождает систему, эквивалентную X.

Пусть H_t — множество эквиморфизмов $R^t \times M$, для которых каждое M_t

пивариантно. В H_t введем метрику

$$\rho(h, h_1) = \sup_{t \in R} \max_{X \in M} [d(h(t, x), h_1(t, x)) + d(h^{-1}(t, x), h_1^{-1}(t, x))],$$

где $h(t,\cdot)$ — эквиморфизм $M_t \to M_t$, полученный из $h \in H_t$ при фиксированном $t, d(\cdot, \cdot)$ — метрика на M, порождениая римановой метрикой.

В метрике $ho = H_t$ — топологическая группа. Если X — н.д.с., то через $H_{t}^{\mathbf{x}}$ обозначим замкнутую подгруппу эквиморфизмов из H_{t} , которые переводят решения системы X в решения системы X.

Определение 4. Решение Г п.д.с. Х называется особым, если существует такое $\varepsilon > 0$, что все $h \in H_t^x$, для которых $\rho(h, \mathrm{id}) < \varepsilon$, оставляют Г неподвижным.

Выделим один важный класс особых решений.

Определение 5. Решение $\varphi_{\tau}^{t}(x)$ н.д.с. X на M называется гипе рболическим (h-решением), если касательное пространство $T ilde{M}_t$ в каждой точке $\varphi_{\tau}^{\ t}(x)$ разлагается в прямую сумму $E_{t}^{\ s} \oplus E_{t}^{\ u}$, инвариантную относительно дифференциала $T\varphi_{\tau}^{t}$ $(T\varphi_{\tau}^{t}(\xi) \in E_{t}^{s}, \text{ если } \xi \in E_{\tau}^{s},$ $T\varphi_{\tau}^{t}(\eta) \in E_{t}^{u}$, если $\eta \in E_{\tau}^{u}$), и при некоторых положительных C, C', λ, γ выполнены оценки (в некоторой римановой метрике)

$$\begin{split} & \| T \phi_{\tau}^{l}(\xi) \| \leqslant C e^{-\lambda(l-\tau)} \| \xi \|, \quad t \geqslant \tau, \quad \xi \in E_{\tau}^{s}; \\ & \| T \phi_{\tau}^{l}(\eta) \| \geqslant C' e^{\gamma(l-\tau)} \| \eta \|, \quad t \geqslant \tau, \quad \eta \in E_{\tau}^{u}. \end{split}$$

Для линейной системы это совпадает с понятием экспоненциальной дихотомии (см. (5, 6)).

Для h-решения в некоторой его цилиндрической окрестности в $R^{\iota} imes M$ (т. е. окрестности, эквиморфной $R^i \times D$, D - n-мерный диск) можно доказать существование C^4 -гладких локальных устойчивого и неустойчивого многообразни $W^s_{\text{лок}}$ и $W^u_{\text{лок}}$ (см. (3, 4)) и затем обычными методами, как и в автономном случае, продолжить их до глобального устойчивого и неустойчивого многообразий W^s , W^u (7, 8).

Эти миогообразия являются взаимно однозначными послойными C^r -вложениями $R^1 \times \tilde{R}^p$, $R^1 \times R^q$, $p+q=n=\dim M$ (т. е. вложениями на каждом слое $\{t_0\} \times R^p$, $\{t_0\} \times R^q$), которые гладко зависят от t_0 в C^1 тонологии на компактных множествах. Индексом h-решения будем называть p= $=\dim W^s-1$. В крайних случаях устойчивости (p=n) или пеустойчивости (p=0) неустойчивым (соответственно устойчивым) многообразием будем считать само Γ .

Пусть два h-решения одного индекса асимптотически сближаются при возрастании t, т. е. $d(\varphi_{\tau}^{t}(x), \varphi_{\tau}^{t}(x')) \to 0$ при $t \to \infty$. Тогда, в силу свойств устойчивого миогообразия, устойчивые многообразия этих h-решений совпадают как множества и поэтому можно говорить об их общем устойчивом многообразии.

Определение 6. Множество h-решений одного индекса, имеющих общее устойчивое (неустойчивое) многообразие, называется положительным (отрицательным) пучком h-решений, а их общее устойчивое (неустойчивое) многообразие называется устойчивым (неустойчивым) многообразием пучка.

st Эквиморфизмом метрического пространства A с метрикой $ho(\cdot,\;\cdot)$ пазывается такой гомеоморфизм $h: A \to A$, для которого h, h^{-1} являются равномерными гомеоморфизмами (см. (4)).

Из определения ясно, что каждое h-решение принадлежит некоторому положительному пучку h-решений, а также некоторому отрицательному пучку h-решений.

Определение 7. Решения Γ_{i} , Γ_{2} н.д.с. X эквивалентны, если по любому $\varepsilon > 0$ существует $n(\varepsilon) \in Z$ и $h_{i} \in H_{i}^{x}$, $i = 1, 2, \ldots, n(\varepsilon)$, что

 $h_{n(\varepsilon)} \circ h_{n(\varepsilon)-1} \circ \ldots \circ h_1(\Gamma_1) = \Gamma_2 \text{ if } \rho(h_i, \text{id}) < \varepsilon.$

Класс эквивалентности решений будем пазывать ячейкой. В частности, из определения 7 следует, что каждое особое решение является ячейкой. Простейшим типом систем с этой точки зрения будут системы с конечным числом ячеек. Системы класса G, к изучению которых мы переходим, обладают таким свойством. Эти системы удовлетворяют следующим геометрическим ограничениям:

1) Конечное число ячеек.

2) Все особые решения являются гиперболическими.

3) Устойчивые и пеустойчивые многообразия пучков пересекаются трансверсально, в том числе и в бесконечности *.

4) Всякое неособое решение лежит в пересечении устойчивого многообразия некоторого положительного пучка h-решений и неустойчивого многообразия некоторого отрицательного пучка h-решений.

5) Для каждого h-решения Γ_i выберем произвольно его цилиндрическую окрестность U_i . Пусть $U = \bigcup U_i$. Если $(\tau, x) \in (R^i \times M) \setminus U$ и $\phi_{\tau}^{\ t}(x)$ — решение, то существуют t_1 , t_2 , $t_1 < t < t_2$ такие, что $\phi_{\tau}^{\ t_i}(x) \in \overline{U}$, а $\phi_{\tau}^{\ t}(x) \not\in U$, $t \in (t_1, t_2)$. Тогда условие 5 состоит в том, что $|t_1 - t_2|$ ограничено для всех таких решений (граница, конечно, зависит от U) **.

Примером системы класса G на M является грубая градиентная система на M, рассматриваемая как неавтономная в $R^1 \times M$, а также ее малое неавтономное возмушение.

Изучим теперь систему класса G на M^2 .

T е о р е м а 1. Система класса G на M^2 груба.

В частности, для систем с почти периодическим неавтономным векторным полем имеет место следующая

T е о р е м а 2. Если система класса G на M^2 почти периодична, то все особые решения почти периодические и система эквивалентна грубой автономной системе на M^2 без периодических движений, рассматриваемой как неавтономная в $R^1 \times M$.

В случае h=2 h-решения могут быть только трех типов: устойчивые (p=2), седловые (p=1) и неустойчивые (p=0). На M_t^2 следы устойчивых (неустойчивых) многообразий пучков будут одномерными гладкими кривыми, примыкающими к следам неустойчивых (устойчивых) h-решений. Построим разбиение M_t^2 на клетки: 0-мерные клетки — следы неустойчивых k-решений, k-мерные клетки — следы устойчивых многообразий устойчивых пучков.

Верна следующая

Теорема 3. Построенное разбиение является клеточным комплексом и верны неравенства Морса

$$R_0 \geqslant b_0$$
, $R_1 - R_0 \geqslant b_1 - b_0$, $R_2 - R_1 + R_0 = b_2 - b_1 + b_0 = \chi(M^2)$,

* Это означает, что многообразия не могут неограниченно сближаться при $t \to +\infty \, (-\infty)$ не пересекаясь.

** Замечание. Условие 5 существенно для доказательства грубости систем класса *G*, так как при невыполнении его у возмущенной системы могут появляться новые особые решения. В качестве примера можно рассмотреть н.д.с., порождаемую уравнением па [—1, 1]:

$$\dot{x} = (1-x)(1+x)[x^2+0.5(1-x^2)\exp(-t^2)-\mu].$$

При $\mu=0$ у пес два особых h-решения $x\equiv 1$ и $x\equiv -1$. При $\mu=0$ появляются еще два особых решения.

где R_i — число положительных пучков индекса i, $b_i = \operatorname{rang} H^i(M^2, R)$, $\chi(M^2)$ — эйлерова характеристика M^2 .

Отметим, что если в случае автономной системы каждому устойчивому многообразию соответствует стационарная точка системы или периодическая орбита (9), то здесь такого соответствия нет, здесь основную роль играют именно пучки h-решений, причем число положительных пучков может быть не равно числу отрицательных. Введем некоторый инвариант — диаграмму системы. Зафиксируем M_t . Следы всех h-решений вместе со следами устойчивых и неустойчивых многообразий пучков образуют некоторый связный граф, вложенный в M_t^2 (исключением является система, эквивалентная потоку северный полюс — южный полюс на S^2). Два таких вложенных графа будем считать эквивалентными, если существует гомеоморфизм M_t^2 , переводящий один граф в другой с сохранением типа вершин (устойчивые, неустойчивые, седловые). Класс эквивалентности таких графов, в котором содержится граф, полученный для данной системы на M_t^2 , будем называть диаграммой системы. Это определение не зависит от выбора t.

T е о р е м а 4 4. Для того чтобы две системы класса G на M^2 были эквивалентными, необходимо и достаточно, чтобы их диаграммы были одина-

ковыми.

Научно-исследовательский институт прикладной математики и кибернетики при Горьковском государственном университете им. Н. И. Лобачевского Поступило 29 V 1972

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ А. А. Андронов, Л. С. Понтрягин, ДАН, 14, № 5 (1937). ² Е. А. Леонтович-Андронова, III Всесоюзн. матем. съезд. 3, 1958. ³ В. С. Афраймович, Л. П. Шильников, УМН, 27, в. 3 (1972). ⁴ В. А. Ефремович, УМН, 8, в. 5 (1953). ⁵ Х. Л. Массера, Х. Х. Шеффер, Линейные дифференциальные уравнения и функциональные пространства, М., 1970. ⁶ Ю. А. Далецкий, М. Г. Крейн, Устойчивость решений дифференциальных уравнений в банаховом пространстве, М., 1970. ⁷ Д. В. Аносов, Тр. Матем. инст. им. В. А. Стеклова, 90 (1967). ⁸ S. Smale, Ann. Scuola Norm. Sup. Pisa, ser. III, 17 (1963). ⁹ S. Smale, Bull. Am. Math. Soc., 66, 43 (1960).