СПЕКТРОСКОПИЧЕСКИЕ И ЛЮМИНЕСЦЕНТНО-КИНЕТИЧЕСКИЕ СВОЙСТВА КСУ И КСЛ В РАЗЛИЧНЫХ КОНДЕНСИРОВАННЫХ СРЕДАХ

Миненко А.А. старший преподаватель кафедры ВМиФ ФГОУ ВПО «Брянская государственная сельскохозяйственная академия», Алешкевич Н.А. доцент кафедры «Оптики» Гомельский Государственный университет имени Ф. Скорины

Введение. Формирование как структуры, так и оптических свойств материалов на основе соединений уранила и РЗИ обусловлено, прежде всего, особенностями электронного строения комплексов данных активных ионов. В смешанных системах, содержащих одновременно ионы уранила и РЗИ, проявляются также специфические свойства, связанные с наличием двух комплексообразователей U^{6+} и Ln^{3+} [1].

Материал и методика исследований. Спектроскопические и люминесцентно-кинетические свойства смешанных систем определяются как наличием двух типов хромофоров комплексов UO_2^{2+} и Ln^{3+} , так и переносом энергии возбуждения между ними.

В настоящее время практически отсутствуют систематические исследования влияния лигандного окружения на спектроскопические свойства растворов ураниловых комплексов. Детально исследовано лишь влияние нейтральных лигандов типа диметилсульфоксида, диметилформамида, диэтилацетамида, диэтилсульфоксида и т.п. на электронные спектры уранилнитратных и уранилгалогенидных комплексов [2, 3]. В данных работах показано, что существует линейная зависимость между спектральным положением полос чисто электронных переходов $v=v_{00}$ (а также их повторений с частотой симметричных валентных колебаний уранила $v=v_{00}-v_{\rm s}$) и значениями донорных чисел N_D нейтральных лигандов, определяемая соотношениями вида

$$v(N_D) = v(N_0) - A \cdot N_D,$$

где $v(N_0)$ — частота максимума полосы перехода при значении донорного числа лиганда, равном нулю (в частности, дихлорэтана), A — постоянная, определяемая химической природой лиганда.

В работах [2, 3] отмечается также, что для кристаллических соединений нитратов уранила при криогенных температурах (менее 80 K) существует также линейная зависимость между положениями полос вибронных переходов и значениями потенциалов ионизации внешнесферных катионов P_{M^+} :

$$\nu(P_{M^+}) = B + C \cdot P_{M^+}, \tag{2}$$

где значения постоянных B и C зависят от температуры и определяются значением колебательного квантового числа (v=0, 1, 2, ...).

Результаты эксперимента и их обсуждение. Нами исследовались серии растворов нитратов, сульфатов, ортофосфатов, оксалатов уранила идентичного состава, в которые в качестве оптически индифферентного ("внешнесферного") катиона-компенсатора заряда вводились замещением ионов водорода катионы главной подгруппы первой группы периодической системы, модифицирующее влияние которых на оптические свойства активных центров в условиях координации различными лигандами.

При эмпирическом описании влияния ауксохромных групп (лигандов) на спектроскопические свойства комплексов используются так называемые спектрохимические серии [4]. Порядок следования лигандов в серии связан с эффектами спин-орбитального и электростатического взаимодействия и отображает прочность комплекса и заместительную способность лиганда. Для различных комплексообразователей существуют свои спектрохимические серии. Для комплексов уранила такая серия имеет вид [5]

Сведения о положении фосфатного аниона в данном ряду отсутствуют.

Выводы. Для всех серий растворов регистрировались спектры поглощения в диапазоне 29400÷20000 см⁻¹ при температурах T=265÷333 К. В данном температурном диапазоне не наблюдается замерзания или поликонденсации, модельные растворы стабильны и сохраняют жидкую консистенцию, хотя вязкость их в интервале 265÷290 К в значительной степени меняется. В указанном диапазоне спектры всех серий растворов высокой точностью могут быть представлены четырнадцатью гауссовыми компонентами, т.е. таковым для перхлоратных растворов, исследованных в работах Белла и Биггерса [6, 7].

Литература

- 1. Сытько В.В., Умрейко Д.С. Фотоника соединений шестивалентного урана.- Гомель: ГГУ им. Ф. Скорины, 2000.- 180 с.
- 2. Зажогин А.П. Спектрально-структурные закономерности формирования комплексов уранила в конденстрованной фазе: Дисс... доктора физ.-мат.наук: 01.04.05.- Минск, 1999.- 328 с.
- 3. Умрейко Д.С., Дик Т.А., Зажогин А.П. и др. Спектры и структура комплексов уранила.- Минск: БГУ, 2004.- 191 с.
- 4. Jorgensen C.K. Modern Aspects of Ligand Field Theory. Amsterdam e.a: North-Holland Publ. Co., American Elsevier Publ. Co. Inc., 1971.- 538 p.
- 5. Комплексные соединения урана / АН СССР, Ин-т общей и неорг. химии.— М.: Наука, 1964.— 492c.
- 6. Bell J.T., Biggers R.E. Absorbtion Spectrum of Uranyl Ion in Perchlorate Media. Part II. The Effect of Hydrolysis on the Resolved Spectral Bands // J. Mol. Spectrosc.- 1967.- V. 22.- P. 262-271.
- Bell J.T., Biggers R.E. Absorbtion Spectrum of Uranyl Ion in Perchlorate Media. III. Resolution of the Ultraviolet Band Structure; Some Conclusions Concerning the Excited State of UO₂²⁺ // J. Mol. Spectrosc.- 1968.- V. 26.- P. 312-329.
- 8. Peacock R.D. The Intensities of Lanthanide f → f Transitions // Structure and Bonding. 1976. V. 22. P. 83-122.
- 9. Полуэктов Н.С., Кононенко Л.И., Ефрюшкина Н.П., Бельтюкова С.В. Спектрофотометрические и люминесцентные методы определения лантанидов.— Киев: Наук. думка, 1989.— 254 с.
- 10. Желтвай И.И., Бельтюкова С.В. Расчет констант устойчивости комплексов лантанидов в растворах с использованием спектров f—f- переходов // Ж. неорг. химии.— 1998.— Т. 43.— С. 1571-1574.
- Richardson F.S. Terbium Luminescence as a Probe of Lanthanide Coordination in Solution // Rare Earths in Modern Science and Technology.- Pros. 15th Rare Earths Res. Conf.— London: Pienum Press, 1982.— P. 35-36.
- 12. Billard I., Lutzenkirchen K. Equilibrum constants in aqueous lanthanide and actinide chemistry from time-resolved spectroscopy: The role of ground and exited state reactions //

- Radiochem. Acta. 2003. V. 91. P. 285-294/
- 13. Изучение процессов лигандного обмена в комплексах уранила с амидами фосфора в водных растворах / Якшин В.В., Хохлова Н.Л., Казаков В.П., Афоничев Д.Д. // Радиохимия.— 1984.- Т. 1.- С. 48-52.
- 14. Chemical Speciation of the Uranyl Ion under Highly Alkaline Conditions. Synthesis, Structures, and Oxo Ligand Exchange Dynamics / Clark D.L., Conradson S.D., Dodohoe R.J. e.a. // Inorg. Chem.— 1999.— V. 33.- P. 1456—1466.
- 15. Влияние типа лиганда на интенсивность люминесценции ионов Ln³⁺ в водных растворах / Барсуков И.В., Кабаева Е.Н., Сытько В.В., Д. С. Умрейко // Ж. прикл. спектроск.- 2003.- Т. 70.- С. 417-420.
- 16. Ионова Г.В., Мадик Ш., Гийомон Р. Закономерности в изменении координационного числа лантанида в водных растворах комплексов LnL с увеличением порядкового номера иона ${\rm Ln}^{3+}$ // Коорд. химия.— 2001.— Т. 27. С. 471-474