УДК 541.19 <u>ХИМИЯ</u>

Академик Б. П. НИКОЛЬСКИЙ, В. В. ПАЛЬЧЕВСКИЙ, ФАН ТЫ БАНГ

КОМПЛЕКСООБРАЗОВАНИЕ ТРЕХВАЛЕНТНОГО ЖЕЛЕЗА В КИСЛЫХ СУЛЬФАТНЫХ РАСТВОРАХ

Согласно литературным данным (1-7), трехвалентное железо образует сульфатные и, возможно, бисульфатные комплексы. Вопрос о составе и устойчивости этих комплексов, исключая FeSO₄+, остается нерешенным.

Исследование комплексообразования трехвалентного железа в кислых сульфатных растворах было осуществлено с помощью метода окислительного потенциала (*-10*). Образование комплексов в растворе, содержащем двух- и трехвалентное железо, должно отразиться на величине окисли-

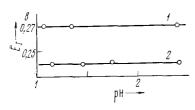


Рис. 1. Зависимость э.д.с. $E_{\rm I}$ элемента (I) от рН при постоянстве концентрации сульфатных ионов. $I - [{\rm SO_4}^{2-}] = 0.19, \ 2 - [{\rm SO_4}^{2-}] = 0.48$ г-ион/л

тельного потенциала системы, для оценки измерения которого применялись гальванические элементы (I) и (II):

а) для умеренно кислых растворов

$$Pt | P | P' | AgCI, Ag!;$$
 (I)

б) для кислых растворов Pt | P | стеклянный электрод, (II)

где $P = Fe(ClO_4)_3(1,0 \cdot 10^{-4}M)$, $Fe(ClO_4)_2 \cdot (1,0 \cdot 10^{-4}M)$, Na_2SO_4 , $HClO_4$, $NaClO_4$; $P' = NaCl(1,0 \cdot 10^{-3}M)$, Na_2SO_4 , $HClO_4$, $NaClO_4$.

Элемент (I) рассматривается как элемент без переноса. Концентрация ионов водорода в растворе P элемента (I) была определена путем графического сравнения потенциалов стеклянных электродов, погруженных в растворы P и P' (11). Для нахождения концентрации ионов водорода раствора элемента (II) был использован гальванический элемент

При этом учитывалось изменение диффузионного потенциала на границе раствор P- насыщенный раствор хлорида калия при замене Na^+ на H^+ .

Все реактивы очищались известными методами (12). Ионная сила растворов поддерживалась равной (3 ± 0.02) и была вычислена с помощью полученных нами значений константы $K_{\rm HSO_4}$ — диссоциации серной кислоты (11). Измерения производились при 25° в атмосфере очищенного углекислого газа.

Для установления состава комплексных соединений в кислых растворах были рассмотрены зависимости E_1 — pH при постоянстве pSO₄ (рис. 1) и E_{11} — pSO₄ при постоянстве pH (рис. 2). Первая из названных зависимостей выражается прямыми, параллельными оси абсцисс, что служит доказательством того, что при достаточно больших концентрациях сульфатных ионов не образуются бисульфатные, гидроксильные и смешанные гидроксосульфатные комплексы.

Зависимость $E_1 - pSO_4$ (где $pSO_4 = -\lg[SO_4^{2-}]$) представляет собой довольно плавную кривую. Наклоны касательных, проведенных в точках кривых, по мере уменьшения pSO_4 повышаются, становятся равными v

(v=2,3RT/F) и больше. Наблюдаемый вид кривой этой зависимости, согласно теории метода окислительного потенциала, может быть объяснен образованием сначала комплекса $\mathrm{FeSO_4^+}$, а затем частичным переходом последнего в комплекс $\mathrm{Fe}(\mathrm{SO_4})_2^-$, так как двухвалентное железо не образует сульфатных комплексов (13) и в исследуемых растворах, согласно



Рис. 2. Зависимость э.д.с. $E_{\rm I}$ элемента (I) от pSO₄. $a-{\rm pH}=1,52,~6-2,00,~s-3,00,$ s-3,00 (с коррекцией на гидролиз)

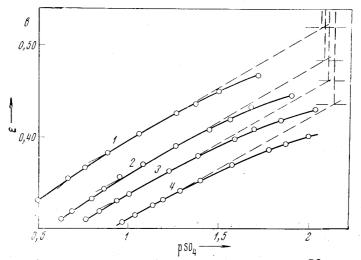


Рис. 3. Зависимость окислительного напряжения ϵ от pSO₄ при разных постоянных значениях pH: $I=1,00;\ 2=0,70;\ 3=0,52,$ 4=0,30

литературным и нашим данным, не идет полиядерное комплексообразование

Реакции образования комплексов указанных составов, а также гидролиз трехвалентного железа в растворах с малой концентрацией сульфатных понов представим уравнениями:

$$Fe^{3+} + SO_4^{2-} = FeSO_4^+ (\beta_{11}),$$
 (1)

$$Fe^{3+} + 2SO_4^{2-} \rightleftharpoons Fe(SO_4)_2^- (\beta_{12}),$$
 (2)

$$Fe^{2+} + H_2O \rightleftharpoons FeOH^{2+} + H^+(K_{101}).$$
 (3)

Уравнение э.д.с. $E_{\rm I}$ элемента (I) можно записать в виде:

$$E_{\rm I} = E^0 - v \lg (1 + \beta_{11} [SO_4^{2-}] + \beta_{12} [SO_4^{2-}] + K_{101}/[Fe^{3+}]), \tag{4}$$

где E^0 — постоянная величина, которая найдена при условии отсутствия сульфата натрия в исследуемых растворах.

В том случае, когда концентрация сульфатных ионов достаточно большая, гидролиз подавлен, уравнение (4) может быть преобразовано к виду

$$Z = (10^{(E^{\circ} - E_{\rm I})/v} - 1) \frac{1}{[SO_4^{2-}]} = \beta_{11} + \beta_{12} [SO_4^{2-}].$$
 (5)

Решение системы уравнений (4) и графическое решение уравнения (5) дали следующие значения констант: $\beta_{11} = 85 \pm 8$ и $\beta_{12} = 130 \pm 20$.

Для выяснения вопроса о бисульфатном комплексообразовании трехвалентного железа была рассмотрена зависимость окислительного напряжения ε , равного э.д.с. элемента (II), от pSO₄ в условиях постоянства других концентрационных параметров системы. Участок с нулевым наклоном на кривых ε — pSO₄ (на рис. 3) отвечает значениям окислительного напряжения в растворах, не содержащих сульфатных и бисульфатных понов. Ход кривых ε — pSO₄ почти аналогичен ходу кривых $E_{\rm I}$ — pSO₄ для умеренно кислых растворов (рис. 2). По мере уменьшения pSO₄ намечается формирование линейного участка с наклоном v, который вскоре изгибается, что отражает тенденцию к образованию линейного участка с наклоном 2v. Это свидетельствуе в пользу того, что в кислых растворах образуются комплексы, содержащие один и два иона SO₄²⁻.

Если бы в растворах существовали только сульфатные комплексы $FeSO_4^+$ и $Fe(SO_4)_2^-$, то касательные с одним и тем же наклоном (например v) ко всем этим кривым при разных зпачениях рН должны были бы пересечь горизонтальные участки в точках, имеющих одну и ту же абсциссу. Поскольку точки этих пересечений сдвигаются вправо с повышением концентрации ионов водорода, т. е. с повышением концентрации бисульфатных ионов, то этот сдвиг по теории метода окислительного потенциала отражает образование комплекса трехвалентного железа с бисульфатными ионами.

Бисульфатный комплекс, вероятно, образуется прямым присоединением бисульфатного иона к трехвалентному железу:

$$Fe^{3+} + HSO_4^- \rightleftharpoons FeHSO_4^{2+}. \tag{6}$$

В соответствии с тем, что в растворах протекают процессы (1), (2) и (6), уравнение окислительного напряжения при постоянстве рН можно выразить в виде

$$\varepsilon = \varepsilon^{0} - v \lg (1 + \beta_{11} [SO_{4}^{2-}] + \beta_{12} [SO_{4}^{2-}] + \beta_{1101} [HSO_{4}^{-}]), \tag{7}$$

где ϵ^{θ} — постоянная величина.

$$\beta_{1101} = [FeHSO_4^{2+}]/[Fe^{3+}] [HSO_4^{-}].$$

Определив изменения окислительного напряжения $\Delta \epsilon$ ($\Delta \epsilon = \epsilon^{\circ} - \epsilon$) можно вычислить константы устойчивости комплексов. Оказалось, что константа устойчивости β_{1101} мала и равна $1,0\pm0,5$. Полученные значения констант β_{11} , β_{12} практически не отличаются от их значений в умеренно кислых растворах.

Большое различие между комплексообразующими способностями сульфатных и бисульфатных ионов не является неожиданным. Оно согласуется с эмпирическим правилом, в соответствии с которым прочность дативной связи и, следовательно, прочность комплексных соединений тем больше, чем больше родство к протону лиганда— аниона, сопряженного с данной кислотой.

Лепинградский государственный университет им. А. А. Жданова

Поступило 26 IX 1972

ПИТИРОВАННАЯ ЛИТЕРАТУРА

¹ R. A. Whiteker, N. Davidson, J. Am. Chem. Soc., 75, 3081 (1953). ² M. W. Lister, D. E. Rivington, Canad. J. Chem., 33, 1591 (1955). ³ G. G. Davis, W. Mac, F. Smith, Canad. J. Chem., 40, 1836 (1962). ⁴ R. L. S. Willis, Trans. Farad. Soc., 59, 1315 (1963). ⁵ B. N. Mattoo, Zs. phys. Chem., 19, 3—4, 156 (1959). ⁶ R. Broszkiewicz, S. Minc, Nukleonika, 7, 251 (1962). ⁷ O. E. Звягинцев, С. Б. Ляхманов, ЖНХ, 14, 1822 (1969). ⁸ В. П. Никольский, В кн. Термодинамика и строение растворов, Изд. АН СССР, 1959, стр. 122. ⁹ М. С. Захарьевский, В. В. Пальчевский, в сборн. Химия и термодинамика растворов, Л., 1964. ¹⁰ В. Б. Пальчевский, Х. М. Якубов, в сборн. Комплексообразование в окислительно-восстановительных системах, 1972, стр. 5. ¹¹ В. В. Пальчевский, Фан Ты Банг, Вестн. Ленингр. унив., № 10, 144 (1972). ¹² Ю. В. Карякин, И. И. Ангелов, Чистые химические реактивы, М.— Л., 1951. ¹³ М. Еhrenfreund, J. L. Leibenguth, Bull. Soc. Chem. France, 1970, 2498.