УДК 517.9

MATEMATUKA

В. Р. ПОРТНОВ

ОБ УСЛОВИЯХ НОРМАЛЬНОЙ РАЗРЕШИМОСТИ В СМЫСЛЕ ХАУСДОРФА ОДНОЙ НЕЛИНЕЙНОЙ ЗАДАЧИ

(Представлено академиком С. Л. Соболевым 12 VI 1972)

1°. В настоящей заметке исследуется нелицейная задача, называемая задачей L, которая возникает в теории дифференциальных уравнений с частными производными. Понятия ядра $\operatorname{Ker} L$, коядра $\operatorname{Coker} L$ и нормальной разрешимости задачи L в смысле Хаусдорфа мы вводим по аналогии с линейным случаем. Изучается вопрос о том, когда задача L нормально разрешима в смысле Хаусдорфа и когда, помимо нормальной разрешимости, разность между любыми двумя ее решениями принадлежит подпространству Кег L. Приволятся достаточные условия нормальной разрешимости, более удобные для проверки, чем условия, сформудированные в работе автора (1), где исследовалась похожая задача. В частности, заранее не предполагается существование банахова пространства X, которое оператор задачи отображает на сопряженное пространство X^* . Оно строится как ядро оператора, аналогичного проекционным операторам С. Л. Соболева (2), причем для этого оператора оказывается справедливым неравенство, в одном специальном частном случае полученное С. М. Никольским и П. И. Лизоркиным (3). На пространстве X к оператору задачи Lприменяется известная теорема Ф. Браудера (4) о разрешимости нелинейных уравнений с монотопными операторами.

 2° . Постановка задачи L. Пусть \Re и Z — вещественные банаховы пространства, \mathfrak{C}_{\circ} , V_{\circ} и U — линейные подпространства в \Re (не обязательно замкнутые), V — замыкание подпространства V_{\circ} в \Re , а \mathfrak{C}_{\circ}' — совокупность линейных, т. е. аддитивных и однородных, функционалов на \mathfrak{C}_{\circ} .

Будем предполагать, что имеет место включение $\mathfrak{C}_0 \subset V_0$.

Пусть, далее, $\Phi\colon U \to Z^*$ — непрерывный оператор (вообще говоря, нелинейный), $\mathscr{L}\colon V \to Z$ — линейный непрерывный оператор, а $\mathscr{L}^*\colon Z^* \to \mathfrak{C}_{\scriptscriptstyle 0}{}'$ — линейный оператор, определяемый при помощи тождества $\langle w,\mathscr{L}v \rangle = \langle \mathscr{L}^*w,v \rangle$ $\forall v \in \mathfrak{C}_{\scriptscriptstyle 0}$, $\forall w \in Z^*$.

Рассмотрим уравнение

$$\mathcal{L}^*\Phi(u) = F,\tag{1}$$

в котором F — заданный функционал из пространства \mathfrak{C}_0' , а u — искомый элемент подпространства U.

Очевидно, элемент $u \in U$ является решением уравнения (1) в том и только в том случае, если выполняется тождество $\langle \Phi(u), \mathcal{L}v \rangle = \langle F, v \rangle$ $\forall v \in \mathfrak{C}_{\alpha}$.

Пусть задано некоторое семейство операторов $\{B_{\mathbf{v}}: U \to \Psi_{\mathbf{v}}\}_{\mathbf{v} \in \mathbf{N}}$ (не обязательно линейных), где N— множество индексов, быть может, и пустое, а $\Psi_{\mathbf{v}}$ — вещественное линейное пространство $\mathbf{v}_{\mathbf{v}} \in \mathbf{N}$.

Следуя С. Л. Соболеву (2), совокупность элементов $\{\Psi_v\}_{v\in\mathbb{N}}, \ \psi_v \in \Psi_v$, назовем допустимой, если найдется такой элемент $u^{(0)} \in U$, что $B_v u^{(0)} = \psi_v$ $\forall v \in \mathbb{N}$. Элемент $u^{(0)}$ в таком случае называется продолжением совокупности элементов $\{\psi_v\}_{v\in\mathbb{N}}$. Если $\mathbb{N} = \phi$, то пустую совокупность элементов $\{\psi_v\}_{v\in\mathbb{N}}$ мы для удобства будем считать допустимой, а любой элемент $u^{(0)} \in U$ — ее продолжением.

Введем еще на множестве $U \times V$ вещественный функционал $D_0(u,v)$, который непрерывен по каждому из аргументов u и v в отдельности, ли-

неен по второму аргументу v и удовлетворяет равенству $D_0(u,v)=0$ $\forall u\in U, \ \forall v\in \mathfrak{C}_0.$

Положим

$$D(u, v) = \langle \Phi(u), \mathcal{L}v \rangle + D_0(u, v) \quad \forall u \in U, \forall v \in V$$

и перейдем к формулировке основной задачи.

Задача L. Пусть заданы функционал $f \in V^*$ и некоторая допустимая совокупность элементов $\{\psi_v\}_{v \in \mathbb{N}}$. Требуется найти такой элемент $u \in U$, что 1) $D(u,v) = \langle f,v \rangle$ $\forall v \in V_0$ и 2) $B_v u = \psi_v$ $\forall v \in \mathbb{N}$.

Отметим, что при $N=\phi$ задача L состоит в отыскании по заданному функционалу $f\in V^*$ такого элемента $u\in U$, который удовлетворяет соотношению $D(u,v)=\langle f,v\rangle$ $\forall v\in V_0$.

Если через F обозначить сужение функционала f с V на \mathfrak{C}_0 , то, очевидно, всякое решение задачи L есть решение уравнения (1), и, обратно, всякое решение уравнения (1), удовлетворяющее дополнительным условиям $D(u,v)=\langle f,v\rangle$ $\forall v\in V_0$ и $B_vu=\psi_v$ $\forall v\in \mathbf{N}$, является решением задачи L.

Следует отметить, что в виде уравнения (1) могут быть записаны многие дифференциальные уравнения и системы, имеющие так называемую дивергентную форму (см., например, ($^{4-6}$)); при этом задача L, определяемая семейством операторов $\{B_v\}_{v\in\mathbb{N}}$, липейным пространством V_0 и функционалом $D_0(u,v)$, порождает некоторую краевую задачу. В роли пространства \Re выступает обычно некоторое функциональное пространство типа С. Л. Соболева, а решение уравнения (1) является обобщенным решением из этого пространства.

Положим

$$\operatorname{Ker} B_{\mathsf{v}} = \{ w \in U \colon B_{\mathsf{v}}(u + \lambda w) = B_{\mathsf{v}}(u) \quad \forall u \in V \text{ и всех}$$
 вещественных чисел $\lambda \};$ $W = \left\{ egin{align*} U, & \operatorname{если} & \mathrm{N} = \phi, \\ \bigcap\limits_{\mathsf{v} \in \mathbf{N}} & \operatorname{Кer} B_{\mathsf{v}}, & \operatorname{если} & \mathrm{N} \neq \phi; \end{array} \right.$

 $\text{Ker } L = \{ w \in W \colon D(u + \lambda w, v) = D(u, v) \quad \forall u \in U, \ \forall v \in V$ и всех вещественных чисел $\lambda \},$

$$\begin{aligned} \operatorname{Coker} L &= \{ v \in V \colon D(u,v) = 0 \quad \forall u \in U \}, \\ (\operatorname{Coker} L)^{\perp} &= \{ f \in V^* \colon \langle f,v \rangle = 0 \quad \forall v \in \operatorname{Coker} L \}. \end{aligned}$$

Подпространства $\operatorname{Ker} L$ и $\operatorname{Coker} L$ будем называть соответственно я дром и коядром задачи L.

Определение. Задача L называется: 1) нормально разрешимой в смысле X аусдорфа, если, какова бы ни была допустимая система элементов $\{\psi_v\}_{v\in\mathbb{N}}$, для ее разрешимости необходимо и достаточно чтобы $f\in (\operatorname{Coker} L)^\perp$; 2) вполне нормально разрешимой і смысле X аусдорфа, если она нормально разрешима в смысле X аусдорфа, и, кроме того, разность между любыми двумя ее решениями при надлежит подпространству $\operatorname{Ker} L$.

В случае, когда $N=\phi$, данное выше определение нормальной разре шимости может быть сформулировано еще и таким образом: задача I называется нормально разрешимой в смысле X аусдор Φ а если для существования элемента $u \in U$, удовлетворяющего соотношеник $D(u,v)=\langle f,v\rangle$ $\forall v\in V_0$, необходимо и достаточно, чтобы $\langle f,v\rangle=\langle V_0,v\rangle$ $\forall v\in C$ oker L.

 3° . Условия нормальной разрешимости задачи L. Вве дем подпространство $Q = V \cap W$ и предположим, что наряду с нормой $\|u\|$ на пространстве \Re задана еще полунорма p(u), ядро которой $\{u \in \Re p(u) = 0\}$ мы обозначим через $\operatorname{Ker} p$.

Приведем условия, достаточные для нормальной разрешимости и для полной нормальной разрешимости задачи L.

Условие I. Подпространства Q и $Q + \operatorname{Ker} p$ замкнуты в \Re .

Условие II. Имеет место неравенство $p(u) \leq M \|u\|_{\Re}$ $\forall u \in Q$, где M — константа, не зависящая от $u \in Q$.

Условие III. Существует линейный оператор П: $Q \to \operatorname{Ker} p$, удовлетворяющей неравенству $\|u - \Pi u\|_{\Re} \leqslant A p(u)$ $\forall u \in Q$, где $A - \operatorname{кон-}$ станта, не зависящая от $u \in O$.

У с ловие IV. Ядро полунормы p(u) допускает разложение в прямую сумму вида $\operatorname{Ker} p = (Q \cap \operatorname{Ker} p) \oplus \Lambda$, где Λ — некоторое замкнутое линейное подпространство в Я.

Положим

$$X = \{ u \in Q \colon \Pi u \in \Lambda \}.$$

Условие V. Замыкание подпространства Хв Я является относительно нормы $||u||_{\Re}$ рефлексивным сепарабельным пространством Бапаха.

Условие VI.
$$\lim_{u \in X, \ p \ (u) \to \infty} \frac{D \ (w + u, \ u)}{p \ (u)} = \infty \quad \forall w \in U.$$

Если $X \subseteq \text{Ker } p$, то условие VI будем считать выполненным.

Определение. Пусть $\rho > 0$. Положим $X_{\rho} = \{u \in X: ||u||_{\Re} < \rho\},$ а через $\mathscr{B}_{0}(X)$ обозначим совокупность всех таких вещественных функционалов $\varkappa(u, v)$ на $X_0 \times X_0$, которые обладают следующими свойствами: 1) для всякой последовательности $\{u_n\} \subset X_{\mathfrak{p}}$, сходящейся слабо в \Re к элементу $u \in X_{\rho}$, $\varkappa(u_n, v) \to \varkappa(u, v)$ при $n \to \infty$ $\forall v \in X_{\rho}$, 2) для всякой последовательности $\{v_n\} \subseteq X_{\rho}$, сходящейся по норме пространства \Re к элементу $v \in X_{\rho}$, $\varkappa(u,v_{n}) \to \varkappa(u,v)$ при $n \to \infty$ $\forall u \in X_{\rho}$, 3) для любых элементов $u \in X_{\rho}$ и $v \in X$ справедливо соотношение $\lambda^{-1}\varkappa(u,u-\lambda v) \to 0$ при $\lambda \rightarrow \pm 0$.

У с л о в и е VII. Для любого элемента $w \in U$ и любого $\varrho > 0$ найдется такой функционал $\varkappa_{w,\rho}(u,v) \in \mathscr{B}_{\rho}(X)$, что имеет место неравенство

$$D(w+u, u-v) - D(w+v, u-v) \geqslant \varkappa_{w,\rho}(u,v) \quad \forall u, v \in X_{\rho}.$$

Условие VIII. $Q \cap \operatorname{Ker} p \subset \operatorname{Coker} L$ и $Q + \operatorname{Coker} L = V$.

T е о р е м а A. Eсли выполнены условия I — VIII, то за ∂ ача L нормально разрешима в смысле Хаусдорфа.

Условне IX. $Q \cap \operatorname{Ker} p \subset \operatorname{Ker} L$ и $Q + \operatorname{Ker} L = W$. Условне X. $\{u, v \in U \text{ и } B_v u = B_v v \ \forall v \in \mathbb{N} \} \Rightarrow \{u - v \in W\}$.

Если $N = \phi$, то условие X мы будем считать выполненным.

Отметим, что условие X выполняется, если каждый оператор B_{ν} является линейным на U или если для любого $v \in \mathbb{N}$

$$\{u,v\in U \mid \mathbf{n} \mid B_{\mathbf{v}}u=B_{\mathbf{v}}v\} \Rightarrow \{u-v\in \operatorname{Ker} B_{\mathbf{v}}\}.$$

Условие XI.
$$\{u,v\in U,\ u-v\in X\ \text{п}\ D(u,u-v)=D(v,u-v)\}\Rightarrow \{u-v\in \operatorname{Ker} L\}.$$

T е о p е м а $\ 2$. E сли выполнены условия $\ I \longrightarrow XI$, то задача $\ L$ вполне нормально разрешима в смысле Хаусдорфа.

В заключение отметим, что вопросы, связанные с нормальной разрешимостью нелинейных уравнений в банаховых пространствах, впервые изучались С. И. Похожаевым (7).

Институт математики Сибирского отделения Академии наук СССР Новосибирск

Поступило 29 V 1972

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ В. Р. Портнов, ДАН, 196, № 5 (1971). ² С. Л. Соболев, Некоторые при-² Б. Р. Портнов, дАп, 190, № 5 (1971). ² С. 31. Сооо тев, некоторые применения функционального анализа в математической физике, 1962. ³ С. М. Никольский, П. И. Лизоркин, ДАН, 159, № 3 (1964). ⁴ Ю. А. Дубинский, УМН, 23, в. 1 (1968). ⁵ М. М. Смирнов, Вырождающиеся эллиптические и гиперболические уравнения, «Наука», 1966. ⁶ М. И. Вишик, Тр. Московск. матем. общ., 12 (1963). ⁷ С. И. Похожаев, ДАН, 184, № 1 (1969).