УДК 513.88

MATEMATUKA

B. C. PETAX

О ПРОБЛЕМЕ МОМЕНТОВ В ЛОКАЛЬНО ВЫПУКЛЫХ ПРОСТРАНСТВАХ

(Представлено академиком П. С. Новиковым 13 VI 1972)

1. Пусть E — локально выпуклое пространство *, $(x_k)_{k=1}^{\infty}$ — линейно независимая последовательность элементов из E, а $(c_k)_{k=1}^{\infty}$ — числовая последовательность. Задачу о нахождении непрерывного линейного функционала f на E такого, что $f(x_k) = c_k$. Б. М. Макаров (¹) называет проблемой моментов относительно (x_k) и (c_k) . Если для заданной последовательности (x_k) и любой числовой последовательности проблема моментов разрешима то будем говорить, что проблема моментов для последовательности (x_k) разрешима.

2. Пусть $(X_k)_{k=1}^{\infty}$ — возрастающая $(X_k \subseteq X_{k+1})$ последовательность линейных подпространств в E (топология на X_k индуцирована из E). Если на каждом X_k задан непрерывный линейный функционал f_k такой, что $f_k|_{X_{k-1}} = f_{k-1}$, то будем говорить, что на $(X_k)_{k=1}^{\infty}$ задана согласованная последовательность функционалов. Если для каждой такой последовательности (f_k) можно указать непрерывный линейный функционал f на E такой, что $f|_{X_k} = f_k$, то будем говорить, что проблема моментов для последователь-

ности (X_h) разрешима.

3. Отметим несколько задач, решение которых сводится к решению соответствующих проблем моментов. Пусть в сопряженном E' к локально выпуклому пространству E задана последовательность функционалов $(g_k)_{k=1}^{\infty}$. Сопоставим каждому $x \in E$ числовую последовательность $(g_k(x))_{k=1}^{\infty}$; получим непрерывное отображение E в пространство числовых последовательностей s. Обратно, по каждому отображению g: $E \to s$ строится последовательность элементов (g_k) из E', определяющих это отображение.

Таким образом, вопрос об эпиморфности g эквивалентен вопросу о разрешимости проблемы моментов относительно $(g_k)_{k=1}^\infty$, если наделить E' слабой топологией.

4. Пусть $(F_k, F_{k+1} \xrightarrow{\alpha_k} F_k)_{k=1}^{\infty}$ — обратный спектр локально выпуклых пространств, $F = \lim_{k \to \infty} F_k$. Пусть A_k : $E \to F_k$, $k = 1, 2, \ldots$, — непрерывные линейные отображения локально выпуклого пространства E такие, что $\alpha_k A_{k+1} = A_k$. Положим $A = \lim_{k \to \infty} A_k$. Предположим, что все A_k эпиморфив. Будет ли A эпиморфизмом?

Вопрос об эпиморфиости A сводится к вопросу о разрешимости проблемы моментов для последовательности подпространств $(\operatorname{Im} A_h)_{h=1}^{\infty}$ в про-

странстве E', наделенном слабой топологией.

Очевидно, что задача о разрешимости проблемы моментов включает задачу о непрерывности секвепциально непрерывных функционалов на подпространстве строгого счетного индуктивного предела метризуемых локально выпуклых пространств.

^{*} Все встречающиеся ниже пространства предполагаются отделимыми.

5. Пусть M — подмножество локально выпуклого пространства E, через E_M обозначим линейную оболочку M в E, через M^0 — поляру M в E', через M^{00} — поляру M^0 в E'' (сопряженном к E', наделенному сильной топологией).

T е о р е ма 1. B обозначениях n. 2 пусть сильное сопряженное κ E есть пространство Фреше. Проблема моментов относительно последовательности $(X_k)_k^\infty$ разрешима тогда и только тогда, когда для любого ограниченного множества B в E существует натиральное і такое, что

$$X_{i+j}^{00} \cap E_{B^{00}}^{"} \subset X_{i}^{00}, \quad j=1, 2, \ldots$$

Следствие. Пусть L- линейная оболочка последовательности линейно независимых элементов $(x_k)_{k=1}^{\infty}$ в E, удовлетворяющем условию теоремы. Проблема моментов для (x_k) разрешима тогда и только тогда, когда для любого ограниченного $B=\dim(L\cap E_{B^{00}}^{''})<\infty$. Если E полурефлексивно, то $E_{B^{\infty}}^{''}$ можно заменить на E_B .

Это следствие обобщает некоторые результаты Б. М. Макарова (1).

Отметим, что если в локально выпуклом пространстве E, удовлетворяющем условию теоремы, проблема моментов для любой последовательности линейно независимых элементов $(x_k)_{k=2}^{\infty}$ разрешима, то линейные оболочки ограниченных множеств из E конечномерны. Если E борпологично, то отсюда следует, что E' в сильной топологии изоморфно пространству s.

6. Из теоремы 1 вытекает

Теорема 2. В обозначениях n. 4 пусть E- пространство Фреше u операторы A_k , $k=1,2,\ldots$, эпиморфны.

Для эпиморфности A необходимо и достаточно, чтобы для всякой окрестности нуля U в E существовало натуральное і такое, что

$$\operatorname{Im} A' \cap E'_{U^0} \subset \operatorname{Im} A'_i$$
. (*)

7. Примеры. Если в качестве E взять пространство бескопечно дифференцируемых функций $\mathcal{E}(\Omega)$ в области $\Omega \subset \mathbb{R}^n$, а в качестве F_m — пространство $\mathcal{E}(K_m)$, где $(K_m)_{m=1}^\infty$ возрастающая последовательность компактов в Ω , $\cup K_m = \Omega$, то условие (*) в точности означает A-выпуклость области Ω (см. (4), стр. 392). Получаем, таким образом, необходимое и достаточное условие разрешимости уравнения Au = f в пространстве бесконечно дифференцируемых функций для любого пепрерывного оператора (см. (4), теорема 38.2)

Пусть $\mathbf{R}^{n-1} \to \mathbf{R}^n$, $(y_1, \dots, y_{n-1}) \mapsto (y_1, \dots, y_{n-1}, 0)$ — вложение эвклидовых пространств. Рассмотрим отображение B_k : $\mathscr{E}(\mathbf{R}^n) \to \mathscr{E}(\mathbf{R}^{n-1})$, $B_k(\phi) = \frac{\partial^k \phi}{\partial y_k^n} \bigg|_{y_n = 0}$. В ситуации п. 4 положим $E = \mathscr{E}(\mathbf{R}^n)$, $F_k = 0$

$$=\underbrace{\mathscr{E}\left(\mathbf{R}^{n-1}\right)\times\ldots\times\mathscr{E}\left(\mathbf{R}^{n-1}\right)}_{k\text{ pa3}},\ A_k=B_1\times\ldots\times B_k.$$

Будет ли A эпиморфизмом? Через $\delta^{(k)}$ обозначим производные дельтафункции вдоль y_n . Тогда $\operatorname{Im} B_k'$ представимо в виде $\delta^{(k)} \otimes \mathcal{E}'(R^{n-1})$. Для любой окрестности нуля U в $\mathcal{E}(R^n)$ распределения из E_{U^0}' имеют порядок сингулярности не больше пекоторого i, поэтому $\operatorname{Im} B_{i+j}' \cap E_{U^0}' = \{0\}$, что по теореме 2 влечет эпиморфность A.

Аналогичную задачу для других классов основных функций позволяет решать приводимая ниже теорема 3.

8. Вернемся к ситуации п. 2. Вопрос о разрешимости проблемы моментов сводится к вопросу об эпиморфности соответствующего отображения $E' \longrightarrow \lim X_i'$, что позволяет примепить методы из $\binom{2}{2}$ и $\binom{3}{2}$. Обобщение

используемых теорем может быть получено применением специального класса сетей Де Вилде (5), аналогично доказательству теоремы 3 из (3). Отсюда вытекает

Теорема 3. В обозначениях n. 4 пусть существуют мономорфные отображения $i_n\colon E_n\longrightarrow E,\ n=1,2,\ldots,\$ где $\cup {\rm Im}\ i_n=E\$ и E_n- пространства Фреше. Для эпиморфности A необходимо и достаточно, чтобы при некотором n для любой окрестности нуля U из E_n существовало j такое, что $A({\rm Ker}\ A_i)\subset A(i_nU)$.

Если E_n — банаховы пространства, то последнее условие означает, что A (Ker A_n) = $\{0\}$.

Автор выражает благодарность М. А. Шубину за ценные обсуждения.

Московский государственный педагогический институт им. В. И. Ленина Поступило 7 VI 1972

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ Б. М. Макаров, ДАН, 127. № 5, 957 (1959). ² В. П. Паламодов, Матем. сборн., 75 (117), № 4, 567 (1968). ³ В. С. Ретах, ДАН, 194, № 6, 1277 (1970). ⁴ F. Treves, Topoligical Vector Spaces Distributions and Kernels, N. Y., 1967. ⁵ M. De Wilde, Mém. soc. roy. sci., Liège, 18, № 2 (1969).