ГЕОЛОГИЯ

Д. С. ЧАУХАН

СТРОМАТОЛИТЫ ИЗ ДОКЕМБРИЙСКОЙ ФОСФОРИТОНОСНОЙ ТОЛЩИ АРАВАЛЛИ РАЙОНА УДАЙПУРА, РАДЖАСТАН (ИНДИЯ)

(Представлено академиком В. В. Меннером 17 XI 1972)

В известняках Аравалли в окрестностях г. Удайпура известен ряд месторождений фосфоритов. До недавнего времени формации Аравалли считались совершенно лишенными органических остатков. Однако вместе с открытием фосфоритовых залежей (³) в них были обнаружены многочисленные следы богато развитой водорослевой жизни. Здесь присутствуют строматолиты прекрасной формы, а иногда наблюдаются хорошо сохранившиеся нити водорослей и фрагменты их колоний. Как известно, строматолиты обычно представляют собой слоистые структуры, целиком сложенные карбонатом. Строматолиты района Удайпура, в отличие от обычных, образованы чередующимися слоями темно-серого фосфорита и либо почти белого кальцикулита, либо серого кремнистого известняка, либо, наконед, кремнистой породы. Периферическая часть строматолитовых построек всегда образована фосфоритом.

Строматолиты широко используются для биостратиграфического расчленения и межрегиопальной корреляции осадочных толщ, лишенных других органических остатков. И. К. Королюк (¹) и И. Н. Крылов (²) использовали их для подразделения докембрия Восточной Сибири и других районов СССР; А. Жамотт, В. Каэн и др. (⁴, ⁵) — при корреляции докембрия Родезии, Анголы и Конго и Танганьики; Х. Эджелл (⁶) — при исследовании протерозоя Австралии; К. С. Валдиа (7) — для корреляции карбонатных формаций низких Гималаев и виндия. Пригодность строматолитов для целей биостратиграфии была проверена многими исследователями. М. Е. Раабен (⁶) в недавно опубликованной работе по столбчатым строматолитам позднего докембрия Советского Союза подчеркнула, что столбчатые строматолиты с течением времени претерпевают одновременные изменения в верхнем докембрии или рифее различных регионов Советского Союза, и что это подтверждается К — Аг-датировками по глаукониту.

Строматолитовый комплекс фосфоритопосной толщи Аравалли весьма характерен и может оказаться полезным при пересмотре вопросов стратиграфического положения и возраста вмещающих его осадочных формаций.

Наиболее типичными строматолитами этого комплекса являются Collenia columnaris Fenton and Fenton, C. kussiensis Maslov, C. baicalica Maslov, описанные ниже.

Collenia columnaris Fenton and Feston Puc. 1, $\it 1$

Крупные столбчатые постройки расположены перпендикулярно или под углом $60-80^\circ$ к слоистости пород. Межстолбиковое пространство сложено детритовым известняком с обломками строматолитовых слоев. Строматолитовые слои в колонках обращены выпуклостью вверх. Коэффициент выпуклости арок слоев h/d от 1:3 до 1:4, толщина слоев 3-4 мм; поперечные сечения обычно овальные, иногда округлые. Столбики имеют четкое боковое ограничение, края слоев выступают в виде козырьков. Диаметр столбиков колеблется от 1 до 4 см, высота — от 8 до 30 см.

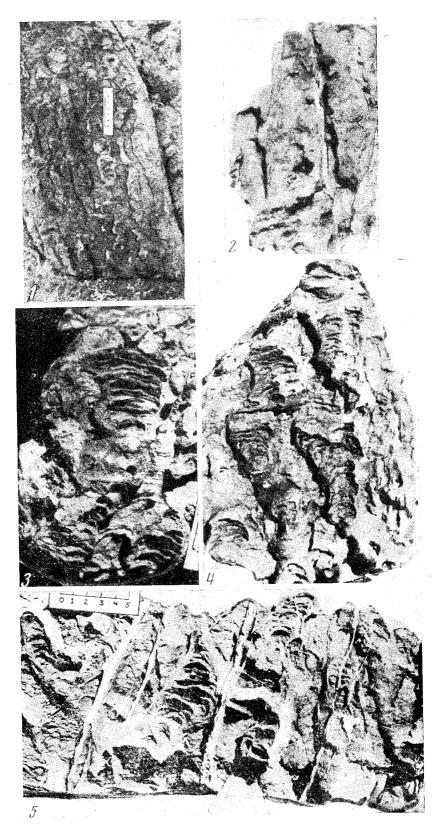


Рис. 1. 1 — Collenia columnaris Fenton and Fenton; 2, 3 — C. kussiensis Maslov.; 4, 5 — C. baicalica Maslov. Общий вид построек

Collenia columnaris — форма, наиболее широко распространенная в известняках Аравалли. Эта форма отмечена в бурзянской серии (нижний рифей) Южного Урала, а также в доломитах Алти серии Белт Северной Америки.

Collenia kussiensis Maslov Puc. 1, 2, 3

Эта форма имеет почти вертикальные ветвящиеся столбики, широкая колонка обычно подразделяется на более узкие ветви. Ширина последних 1—3 см. Боковая поверхность с зубчатыми выступами. Толщина слоев 1—3 мм. Коэффициент выпуклости арки слоя от 1:1 до 1:3. Межстолбиковые промежутки шириной от 1 до 3 см, выполнены детритовым известняком. Поперечное сечение овальное, до эллиптического. Максимальный диаметр столбиков 2—4 см. Высота 10—25 см.

Collenia kussiensis довольно обычна в фосфоритоносной толще. Эта форма широко распространена в нижнем рифее СССР, в частности в бурзянской серии Южного Урала, в учурской серии Учуро-Майского региона Восточной Сибири и т. д. Она встречается также вместе со среднерифейской Collenia baicalica в среднем рифее — майской серии Учуро-Майского

региона.

Collenia baicalica Maslov Puc. 1, 5, 6

Колонки субвертикальные, с дихотомическим ветвлением. Ответвляющиеся колонки обычно сужены у основания и быстро расширяются снизу вверх. Иногда широкая колонка сужается на верхнем конце, который выше развивается в более широкую колонку.

Строматолитовые слои иногда выступают за пределы боковой поверхности и образуют выступы в форме козырьков. Толщина слоев 1-3 мм. Коэффициент выпуклости от 1:2 до 4:3. Поперечное сечение от круглого до овального, иногда эллиптическое. Диаметр у основания от 2 до 7 см. Высота колонок 10-23 см.

Collenia baicalica очень обычна в районе Удайпура. Эта форма одна из немногих, описанных в юрматинской серии Южного Урала, отвечающей нижней части среднего рифея. Вместе с другими представителями Tungussida (8) она широко развита по всему разрезу среднего рифея СССР.

Из описания вышеприведенного строматолитового комплекса очевидно, что серия Аравалли попадает в интервал от нижнего рифея (1500—1300 млн лет) до среднего рифея (1300—1000 млн лет) стратиграфической шкалы верхнего докембрия СССР. Соответственно, возраст формаций Аравалли, включая фосфоритоносные отложения со строматолитами, можно оценить с достаточной уверенностью цифрами от 1500 до 1000 млн лет.

Это отвечает среднему протерозою (1600-900 млн лет) в понимании

С. Н. Саркара (⁹).

Автор благодарен доктору М. К. Пандиа и доктору К. С. Вальдиа, а также Университетской Грант-комиссии за помощь в подготовке настоящего исследования.

Геологический департамент Раджастанского университета Удайнур, Индия Поступило 29 VI 1972

ПИТИРОВАННАЯ ЛИТЕРАТУРА

¹ И. К. Королюк, Международи. геол. конгр., XXI сессия, Докл. сов. геол., пробл. 8 (1960). ² И. Н. Крылов, Тр. Геол. инст. АН СССР, в. 69 (1963). ³ Микtinath, V. N. Sant, Curr. Sci., 36 (1967). ⁴ А. Jamotte, Comite Special du Katanga, Elizabethville, 1944. ⁵ W. Cahen, A. Jamotte et al., Bull. Soc. belg. Geol. Pal. Hydr., 55, fasc. 1 (1946). ⁶ H. S. Edgell, J. Geol. Soc. Australia, 11 (1964). ⁷ K. S. Valdiya, J. Geol. Soc. India, 10, 1 (1969). ⁸ M. E. Raaben, Am. J. Sci., 267 (1969). ⁹ S. N. Sarkar, India School of Mines. Dhanbad, 1968.