УДК 62-501.12

MATEMATUKA

Е. Д. ЯКУБОВИЧ

О ПОСТРОЕНИИ ОПТИМАЛЬНОГО УПРАВЛЕНИЯ, ОСУЩЕСТВЛЯЮЩЕГО ЭКСПОНЕНЦИАЛЬНУЮ СТАБИЛИЗАЦИЮ ЛИНЕЙНЫХ СИСТЕМ

(Представлено академиком В. И. Смирновым 19 VI 1972)

В работе (¹) рассматривается задача о выборе параметров линейной системы дифференциальных уравнений таких, что для любого решения x(t) справедлива оценка $|x(t)| < e^{-\alpha t}|x(0)|$, где $\alpha \ge 0$ и норма $|x| = \sqrt{x^* H x}$, $H = H^* > 0$, считаются заданными *. Ниже рассматривается задача об оптимальном выборе этих параметров.

1°. Рассмотрим линейную систему регулирования

$$dx / dt = Ax + Ru, \quad u = -S^*x \tag{1}$$

и положительно определенную форму $V(x)=x^*Hx$, H>0. Здесь x-n-мерный вектор состояний, u- вектор управлений порядка m ($m \le n$); A, H, R, S- постоянные вещественные матрицы порядков $n \times n$, $n \times n$, $n \times m$, $n \times m$ соответственно, звездочка означает транспонирование. Ниже предполагается, что ранг матрицы R равен m.

Задача состоит в том, чтобы по заданным матрицам A, H, R определить матрицу S (из заданного класса) так, чтобы па любом решении системы (1) перавенство

$$dV(x) / dt + 2\alpha V(x) \le 0 \quad \forall x, \tag{2}$$

выполнялось с максимально больщим числом $\alpha \ge 0$. Здесь $dV(x) / dt = 2x^*H(A+RS^*)x$ — производная форма V(x), вычисленная в силу системы (1). При фиксированном α положим

$$\delta(S) = \inf_{x \neq 0} \left[-\left(\frac{dV}{dt} + \frac{2\alpha V(x)}{V(x)} \right) \right]. \tag{3}$$

Апалогично (1) назовем матрицу R допустимой, если существует матрица S (пазываемая парной матрице R) такая, что $\delta(S)>0$. Пусть \mathfrak{M} — некоторое подмножество в множестве $n\times m$ вещественных парных матриц. Назовем парную матрицу S_0 оптимальной в множестве \mathfrak{M} , если верхняя грань

$$\delta_0 = \operatorname{Sup} \delta(S) \quad \text{при} \quad S \in \mathfrak{M} \tag{4}$$

достигается на этой матрице, т. е. если $\delta_0 = \delta(S_0)$. Если верхняя грань в множеств \mathfrak{M} не достигается, то последовательность матриц $S_1, S_2, \ldots, S_n, \ldots,$ для которых $\lim_{n \to \infty} \delta(S_n) = \delta_0$, назовем оптимизирующей последовательностью в множестве \mathfrak{M} .

Сформулированная выше задача сводится к определению для заданного множества \mathfrak{M} числа δ_0 и оптимальной матрицы $S_0 \in \mathfrak{M}$ или оптимизирующей последовательности $S_n \in \mathfrak{M}$. В теоремах 3, 4 приведено решение этой задачи для множества $\mathfrak{M} = \mathfrak{M}_{\infty}$ всех $(n \times m)$ -матриц и для множества $\mathfrak{M} = \mathfrak{M}_{\infty}$ всех $(n \times m)$ -матриц S таких, что $\|S\| \le \kappa$. Теоремы 1, 2 дополняют результаты S

^{*} Здесь и ниже неравенство H>0 означает, что $x^*Mx>0$ $\forall x\neq 0$, неравенство $H_1>H_2>0$ означает, что $H_1-H_2>0$.

Обозначим через $C_{\alpha} = -(A^*H + HA + 2\alpha H)$ матрицу квадратичной формы $-dV/dt-2\alpha V(x)$, вычисленной в силу первого уравнения (1) для u=0. Предположим, что форма $x^*C_{\alpha}x$ знакопеременна, но не вырождена и имеет μ_{α} отрицательных квадратов, $\mu_{\alpha} \leq m$. (При $\mu_{\alpha} \geq m$ матрица R не является допустимой (1).) Тогда $(m \times m)$ -матрица $R^*HC_{\alpha}^{-1}HR^{\gamma}$ является невырожденной.

Обозначим

$$\tau_0 = -(R^* H C_\alpha^{-1} H R)^{-1}. \tag{5}$$

T е о р е м а 1. Для того чтобы матрица R была допустимой, необходимо, чтобы неравенство $C_{\alpha}+HR$ $\tau R^{*}H>0$ было выполнено для любой $(m\times m)$ матрицы $\tau = \tau^* > \tau_0$, и достаточно, чтобы это неравенство было выполнено для какой-либо матрицы $au= au^*$. При этом будет $au> au_0$ и любая матрица S = IIR σ , где $\sigma + \sigma^* = \tau$, является парной κR .

T е o p e m a 2. Для того чтобы матрица R была допустимой, необходимо и достаточно, **чт**обы матрица (5) имела ровно μ_a положительных собствен-

ных значений.

T е о р е м а 3. $\it Пусть R - \partial onycruмая матрица <math>\it u$ $\it \mu_a = m$. $\it Пусть \mathfrak{M} =$ $=\mathfrak{M}_{\infty}-$ множество всех n imes m парных матриц $S,\,\mathfrak{M}_{\scriptscriptstyle 0}-$ множество парных матриц вида S=HRо, где о-произвольная вещественная (m imes m)-матрица, и λ_{m+1} — наименьший положительный корень уравнения $\det (C_{\alpha} -\lambda H$) = 0 *.

Тогда: 1) Верхние грани (4) на множествах \mathfrak{M}_{∞} и \mathfrak{M}_{0} совпадают.

2) Число δ_0 удовлетворяет неравенству $0 < \delta_0 \le \lambda_{m+1}$.

3) Пусть $S = HR\sigma - \kappa \alpha \kappa \alpha s$ -либо парная матрица и $\mu = \mu_{\min}(\delta) - \mu u \mu u$ мальный корень уравнения

$$\det \begin{bmatrix} \mu I_n - H^{-1/2} C_{\alpha} H^{-1/2} & H^{1/2} R \\ R^* H^{1/2} & (\mathfrak{I} + \mathfrak{I})^{-1} \end{bmatrix} = 0.$$
 (6)

 $Tor\partial a \ \delta(S) = \min [\lambda_{m+1}, \mu_{\min}(\sigma)].$

4) Верхняя грань (4) определяется формулой $\delta_0 = \min \left[\lambda_{m+1}, \ \mu_{\min}^0 \right],$ гое μ_{\min}^0 — минимальный корень уравнения (6), в котором матрица (σ + $+\sigma^*$) $\overline{}$ заменена $m \times m$ нулевой матрицей.

5) Если $\delta_0 < \lambda_{m+1}$, то в множестве \mathfrak{M}_∞ оптимальной матрицы не существует, и любая последовательность $S_k = HR\sigma_k$, где $(\sigma_k + \sigma_k^*) \to 0$ **, является

оптимизирующей.

6) Если оптимальная матрица S_0 существует, то $\delta_0 = \lambda_{m+1}$.

7) Пусть существует конечный предел $\sigma_1={}^4/_2\lim \ \{R^*H[(\lambda_{m+1}+\xi)H-$

 $-C_{\alpha}]^{-1}HR\}^{-1}$ и выполняется неравенство $2\sigma_{i} > \tau_{0}$.

Tогда $\delta_0 = \lambda_{m+1}$ и матрица $S = HR\sigma_1$ является оптимальной в множестве \mathfrak{M}_{∞} . Конечный предел σ_1 существует, например, если векторы-столбцы матрицы $H^{\prime _{h}}R$ лежат в подпространстве собственных векторов матрицы $H^{-\frac{1}{6}}C_{lpha}H^{-\frac{1}{6}}$, отвечающих отрицательным собственным значениям.

8) Пусть $m = \mu_{\alpha} = 1$ и $a_2 - co$ бственный вектор матрицы $H^{-\frac{1}{2}}C_aH^{-\frac{1}{2}}$, отвечающий ее минимальному положительному собственному значению λ_2 . Для того чтобы в классе \mathfrak{M}_{∞} существовала оптимальная $(n \times 1)$ -матрица $|S_i| < \infty$, необходимо, чтобы $a_2^*H^{\vee}R = 0$, и достаточно, чтобы выполнялись условия: $a_2^*H^{1/2}R = 0$ и $\sigma_1^{-1} = 2 \lim \{R^*H[(\lambda_2 + \xi)H - C_\alpha]^{-1}HR\} > 0$.

При этом последний предел существует и конечен.

В случае, когда оптимальной матрицы не существует, для оптимизирующей последовательности п. 5 теоремы 3 имеем $||S_k|| \to \infty$ при $k \to \infty$. Рассмотрим в связи с этим задачу о нахождении оптимальной матрицы S в

Так как $\mu_{\alpha} = m$, то это уравнение имеет m отрицательных корней.

^{**} Запись $\tau^{-1} \to 0$ означает, что минимальное собственное значение матрицы auстремится к ∞ .

множестве \mathfrak{M}_{κ} $n \times m$ парных матриц, ограниченных по норме числом κ : $\mathfrak{M}_{\kappa} = \{S: \|S\| \leq \kappa\}.$

T е o р е м a 4. Π усть $\mathfrak{M} = \mathfrak{M}_{\varkappa}$. $Tor\partial a$:

1) Если число \varkappa удовлетворяет неравенству $\varkappa \leqslant {}^{1}/{}_{2} \|\tau_{0}\| \cdot \|HR\|$, то множество \mathfrak{M}_{\varkappa} пусто.

- 2) При $\varkappa > 1/2 \|\tau_0\| \cdot \|HR\|$ матрица $S_0 = \varkappa HR (R^*H^2R)^{-1/2}$ является оптимальной в множестве \mathfrak{M}_\varkappa . При этом значение (4) является минимальным корнем уравнения (6), в котором($\sigma + \sigma^*$)⁻¹ = $\frac{1}{2\varkappa} (R^*H^2R)^{-1/2}$.
- 2° . Доказательство теорем 1, 2 не приводится. Схема доказательства теоремы 3 дается (для простоты) для случая $m=\mu_{\alpha}=1$, т. е. когда R и S векторы. Общие черты доказательства сохраняются и при $m \geq 1$. Наконец, доказательство теоремы 4 близко к доказательству соответствующих пунктов теоремы 3.

Доказательство теоремы 3. Для простоты доказательства предполагаем, что собственное значение λ_2 матрицы $H^{-1/2}C_\alpha H^{-1/2}$ имеет кратность единица.

1) Представим вектор S в виде $S=HR\lambda+Z$, $Z^*HR=0$. Форма $-(dV(x)/dt+2\alpha V(x))$ при этом имеет вид $x^*(K+HRZ^*+ZR^*H)x$, где $K=C_\alpha+2\lambda HRR^*H$. По теореме 1, в силу допустимости матрицы R при $2\lambda>(-R^*HC_\alpha^{-1}HR)^{-1}$ выполнено перавенство K>0. Положив $Z_1=K^{-1/2}Z$, $R_1=K^{-1/2}RH$, $u=K^{1/2}x$, запишем (3) в виде

$$\delta(S) = \inf_{u \neq 0} \{ u^* \left[I + R_1 Z_1^* + Z_1 R_1^* \right] u \} / u K^{-1/2} H K^{-1/2} u.$$

Тогда $S_0 = \sup_{\lambda} \sup_{L_1} \delta(S)$. Очевидно, внутренний супремум достигается при $Z_1 = 0$, т. е. при Z = 0, что и требовалось доказать.

2) Здесь и ниже предполагаем, что $S \in \mathfrak{M}_0$. Имеем $\delta(S) > 0$, так как в силу допустимости матрицы R матрица S = HR при $2\sigma > (-R^*HC_\alpha^{-1}HR)^{-1}$ является парной и $x^*Kx > 0$. Из теоремы 16 ((²), гл. X), имеем $\delta(S) \leq \lambda_2$, так как форма x^*HRR^*Hx имеет ранг единица. Ниже используются обозначения: $H^{\prime_1}R = B$, $H^{-\prime_2}C_\alpha H^{-\prime_2} = L$, $H^{\prime_2}x = y$, $S = \sigma H^{\prime_2}B$. Тогда (3) примет вид

$$\delta(S) = \inf_{y \neq 0} \frac{y^* (L + 2\sigma B B^*) y}{y^* y}.$$

Ищем минимальное собственное значение $\delta(S(\sigma))$ матрицы $L+2\sigma BB^*$. На любом собственном векторе v имеем равенство $(L+2\sigma BB^*)v=\mu(\sigma)v$. Если $\mu(\sigma)$ — собственное значение матрицы L, то $B^*v=0$; если нет, то $B^*v\neq 0$ и det $(\mu(\sigma)I_n-L)\neq 0$. После простых преобразований получаем: $[1-2\sigma B^*(\mu(\sigma)I_n-L)^{-1}B]B^*v=0$. Очевидно, что корни $\mu(\sigma)$ уравнения $1-2\sigma B^*(\mu(\sigma)I_n-L)^{-1}B=0$ являются собственными значениями матрицы $L+2\sigma BB^*$. Последнее уравнение совпадает для m=1 с уравнением (4) и имеет, вообще говоря, n корней, положительных в силу парности матрицы S. Если $\mu_{\min}(\sigma) \leqslant \lambda_2$, то $\delta(\sigma) = \mu_{\min}$; в противном случае, в силу 2), $\delta(\sigma) = \lambda_2$ и $v(\sigma) = a_2$.

- 4) Пусть $\delta(\sigma) < \lambda_2$, т. е. $\delta(\sigma)$ определяется из уравнения (4). Легко показать, что при $\sigma > 0$ корни $\mu(\sigma)$ уравнения (4) суть функции возрастающие, т. е. $\sup \mu_{\min}(\sigma) = \lim \mu_{\min}(\sigma)$.
 - 5) Очевиден в силу 4).
- 6) Предположив, что $\delta_0 < \lambda_2$, приходим к противоречию в силу строгой положительности $\mu_{\min}'(\sigma)$.
- 8) Пусть $S = H^{\eta_2} R \tau$ оптимальная матрица. Тогда в силу 6) $\delta_0 = \lambda_2$. Имеем очевидную цепочку равенств

$$(L + B\tau B^*)v = \lambda_2 v, \quad a_2^*(\lambda_2 I_n - L)v = 0 = a_2^* B\tau B^* v.$$

Поскольку S — парная матрица, то $\tau > 0$, откуда или $a_2 *B = 0$ или B *v = 0. Однако из B *v = 0 следует, что $v = a_2$.

Обратно, пусть $B^*a_2=0$. Тогда легко показать, что при $\tau=2\sigma_1$ матрица $L+2\sigma_1BB^*$ имеет число λ_2 собственным значением второй кратности. Поскольку $\sigma_1>0$, то $\delta_0=\lambda_2$ (равенство $2\sigma_1>\tau_0$ выполняется автоматически). Отсюда $S=HR\sigma_1$ — оптимальная матрица.

Ленинградский электротехнический институт им. В. И. Ульяпова (Ленина)

Поступило 10 V 1972

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ Е. Д. Якубович, ДАН, 186, № 1 (1969). ² Ф. Р. Гантмахер, Теория матриц, «Наука», 1967.