Доклады Академии наук СССР 1973. Том 209. № 5

УДК 549.657

МИНЕРАЛОГИЯ

Н. В. ВЛАДЫКИН, В. И. КОВАЛЕНКО, А. А. КАШАЕВ, А. Н. САПОЖНИКОВ, В. А. ПИСАРСКАЯ

НОВЫЙ СИЛИКАТ КАЛЬЦИЯ И ЦИРКОНИЯ — АРМСТРОНГИТ *

(Представлено академиком Ф. В. Чухровым 24 XI 1972)

Новый минерал, водный цирконосиликат кальция, обнаружен авторами в Хан-Богдинском массиве агпаитовых щелочных гранитов в Монголии в 1968 г. Проведенное детальное изучение его подтвердило, что минерал ранее известен не был. Новый минерал назван армстронгитом в честь астронавта Н. Армстронга — первого человека, ступившего на лунную поверхность. В агпаитовых гранитах Казахстана, сходных с гранитами Хан-Богдинского массива, где обнаружен армстронгит, известен минерал гагаринит, названный в честь первого в мире космонавта Ю. А. Гагарина (3).

Петрология, геохимия и минералогия пород Хан-Богдинского массива рассмотрены ранее (1, 2).

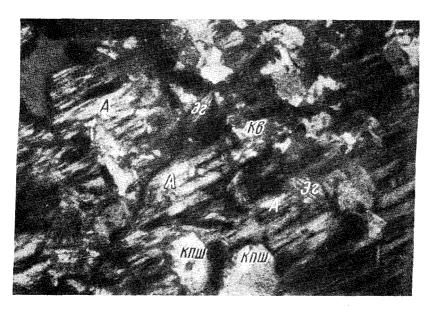


Рис. 1. Полисинтетические двойники армстронгита (A) с кварцем (Ks), микроклином (KHIII) и эгирином (Эг). $64 \times$. Ник.+

Армстронгит встречен в шлировом щелочно-гранитном пегматите, который приурочен к контакту арфведсонитовых гранитов с ксенолитом вмещающих кислых вулканитов (провес кровли) юго-западной периферии массива. Контакт пегматита с породами ксенолита резкий. Кислые вулканиты в зоне контакта слабо ороговикованы.

^{*} Рассмотрено и рекомендовано к опубликованию Комиссией по новым минералам и названиям минералов Всесоюзного минералогического общества 19 V 1972 г.

Пегматит сложен кварцем, микроклином, альбитом, эгирином и арфведсонитом, а из акцессорных минералов встречены монацит, синхизит, белый прозрачный сфен, рудный титаносиликат.

Армстронгит является породообразующим минералом пегматита. В зальбандах пегматита он образует пойкилокристаллы размером до 2 см,

Таблица 1 Межплоскостные расстояния армстронгита (Å)

№№ п .п.	hkl	I	$d/n_{ m M3M}$	$d/n_{\rm BbI^{\rm q}}$	№ № п.п.	I	$d/n_{ m M3M}$
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25	001 020 200 021 221 201 202 040 400 041 240 241 420 401 222 242 042 441 440 261 441 443 204	3 5 9 1 4 1 0 9 1 1 3 4 1 1 1 1 1 1 1 1 3 4 5 1	7,34 7,05 6,60 5,07 4,58 4,26 3,67 3,54 3,30 3,12 3,05 2,995 2,700 2,634 2,591 2,595 2,474 2,416 2,488 2,443 1,987	7,36 7,08 6,61 5,10 4,59 4,26 3,80 3,54 3,30 3,12 3,05 2,995 2,697 2,632 2,591 2,482 2,416 2,198 2,145 1,981 1,948		3 мм; 1	

Таблица 2 Химический состав армстропгита*

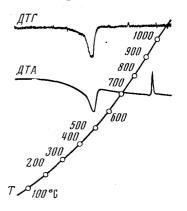
Компонент	Содерж., вес. %	Содерж., за выч. Fe ₂ O ₃ , вес. %	Ат. колич.
$egin{array}{l} { m SiO_2} \\ { m Al_2O_3} \\ { m Fe_2O_3} \\ { m ZrO_2} \\ { m TiO_2} \\ { m \SigmaTR_2O_3} + { m Y_2O_3} \\ { m CaO} \\ { m MgO} \\ { m Na_2O} \\ { m K_2O} \\ { m P_2O_5} \\ { m H_2O_{0f 0m}} \\ \end{array}$	60,12 0,60 1,31 19,80 0,12 0,55 9,15 0,19 0,18 0,14 0,20 7,90	60,76 0,60 	1,0112 0,0118 0,1626 0,0015 0,0050 0,1649 0,0047 0,0058 0,0030 0,0028 0,4440
Σ	100,26	100,00	

^{*} Аналитик В. А. Писарская, 1971 г.

включающие альбит и кварц. общее содержание причем минерала достигает 5%.В центральной части пегматита встречаются мономинеральные обособления агрегатов армстронгита с размером кристаллов до 3 см (при размере обособлений до $50 \times$ $\times 50$ см). На поздних стадиях пегматитообразования минерал замещается сферолитами циркона.

Минерал представлен крупнозернистыми агрегатами неправильной формы, реагрегатами ограненных же удлинением кристаллов, с кристаллов по оси b. Цвет минерала коричневый, в мелких зернах - до светло-коричневого, блеск стеклянный, спайность совершенная по (001) и средняя по (100). Минерал весьма крупный, 310 - 330микротвердость кг/мм², класс твердости 4,6, плотность d = 2,562-2,593, $d_{\rm cp} = 2.577$ (измерена на приборе ТПГ-1). Минерал не разлагается в соляной и азотной кислотах, но разлагается в плавиковой кислоте.

В прозрачных шлифах армстронгит представлен зернами коричневатого цвета, полисинтетически сдвойникованными (рис. 1). Минерал двуосный отрицательный, удлинение относительно спайности положительное (спайные выколки вытянуты по оси b), $cN_m = 5-7^\circ$, $N_g \| b$, $N_g = 1,573$, $N_m = 1,569$, $N_p = 1,563$, $N_g - N_p = 0,010$, плеохроизм отсутствует, дисперсия угла оптических осей r < v.


Минерал — моноклинной

сингонии. Нам не удалось выделить монокристалл армстронгита, поэтому все определения параметров элементарной ячейки выполнены на сдвойникованных кристаллах. На рентгенограммах качания (камера РКОП, Мо-излучение) вокруг оси удлинения b четко виден псевдопериод b'=

= 7,08 Å, истинный же период удвоен: b° = 14,16 Å *. При установке кристалла плоскостью спайности (001) параллельно оси вращения, когда ось b перпендикулярна этой оси, также обнаружен псевдопериод a' = 7,02 Å при истинном периоде a° = 14,04 Å. Выбор третьего направления c сделан по

разверткам слоевых линий h0l, h1l, hk0, 0kl,полученных так называемым методом фотографирования обратной решетки (камера КФОР, Мо-излучение). Расположение рефлексов на этих развертках хорошо объясняется двойникованием, если мы имеем двойник моноклинного кристалла с плотностью срастания двойников (001) и осью двойникования (100). Тогда параметр $c^0 = 7.81$ Å, $\beta = 109^{\circ}33'$, пространственная группа симметрии C2/m, Cm или C2, Z=4, $\rho = 2.71$. Значения относительных интенсивностей и межплоскостных расстояний, рассчитанных без учета поглощения приведены в табл. 1. Все линии дебаеграммы индицируются при параметрах a/2 и b/2, что вызвано отмеченной выше псевдопериодичностью структуры по этим направлениям.

Термическое исследование минерала, проведенное И. Л. Лапидесом (рис. 2), указывает на наличие экзотермического эффекта при 500°, что соответствует выделению воды в минерале, и эндотермического эффекта при 950°, который, видимо, можно объяснить переходом минерала в другую структурную модификацию. При рентгеновском исследовании прокаленного образца армстронгита не обнаружено других фаз. Микрозондовое исследование непрокаленного и прокаленного образцов,

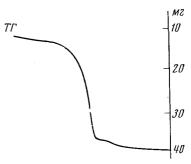


Рис. 2. Дериватограмма армстронгита. ДТА $^{-1}/_{50}$, ТГ 100, навеска 400 мг, инертное вещество — прокаленный Al_2O_3

проведенное Л. А. Перфильевой на приборе MS-46 «Сатеса», говорит о равномерном распределении в минерале кальция, циркония и кремния и о наличии фазы железа.

Результаты химического анализа армстронгита приведены в табл. 2. Полуколичественным спектральным анализом установлено дополнительно (%): Pb 0,01; Ag 0,01; Cr 0,001; Ba 0,001; по данным рентгеноспектрального анализа в минерале содержится 1,27% HfO₂ и 0,001% Nb₂O₅. Сумма редких земель и иттрия (определено методом бумажной хроматографии) равна 0,55% при следующих соотношениях элементов ($\sum TR_2O_3 + Y_2O_3 = 100\%$): La₂O₃ 2,8; Ce₂O₃ 8,8; Pr₂O₃ 0,9; Nd₂O₃ 3,8; Sm₂O₃ 0,7 Gd₂O₃ + Eu₂O₃ 1,3; Tb₂O₃ + Y₂O₃ 55,8; Dy₂O₃ 3,8; Ho₂O₃ 1,4; Er₂O₃ 6,8; Tu₂O₃ 2,9; Yb₂O₃ 9,2; Lu₂O₃ 1,8 (аналитик С. Р. Абрамова). Как видно из анализа, в минерале резко преобладает иттриевая группа редких земель, что говорит в пользу изоморфизма их с цирконием, а не с кальцием. При пересчете химического анализа на кристаллохимическую формулу из расчета исключалось Fe₂O₃.

Предлагается следующая формула армстронгита: $\text{Ca}_{0,96}\text{Na}_{0,03}\text{Mg}_{0,02}\text{K}_{0,01})_{1,02} (\text{Zr}_{0,96}\text{TR}_{0,03}\text{Ti}_{0,01})_{1,00} [(\text{Si}_{5,92}\text{Al}_{0,07}\text{P}_{0,02})_{6,01}\text{O}_{15}] \cdot 2,58\text{H}_2\text{O},$ что отвечает схематической формуле $\text{CaZr}(\text{Si}_6\text{O}_{15}) \cdot 2,5\text{H}_2\text{O}.$

^{*} Здесь и ниже приводятся значения параметров элементарной ячейки, рассчитанные по дебаеграммам после индицирования.

Из известных силикатов минерал похож на эльпидит $Na_2Zr(Si_6O_{15})\cdot 3H_2O$. Минерал хранится в Минералогическом музее Академии наук СССР (Москва).

Советско-Монгольская геологическая экспедиция Академии наук СССР и Академии наук МНР Поступило 23 XI 1972

ПИТИРОВАННАЯ ЛИТЕРАТУРА

¹ В. И. Коваленко, М. И. Кузьмин и др., Редкометальные гранитоиды Монголии, «Наука», 1971. ² В. И. Коваленко, М. И. Кузьмин, А. В. Горегляд, Южно-Гобийский пояс щелочных пород в МНР. Ежегодник-1970, Иркутск, 1971. ³ А. В. Степанов, Новые и редкие минералы в щелочных гранитах Казахстана, Тр. н.-и. инст. Мин. сырья, в. 5, Алма-Ата, 1961.