УЛК 631.46+577.15

ПОЧВОВЕДЕНИЕ

А. Ш. ГАЛСТЯН, Э. Г. СААКЯН

ОПРЕДЕЛЕНИЕ АКТИВНОСТИ ГЛУТАМИНАЗЫ ПОЧВЫ

(Представлено академиком А. Л. Курсановым 1 II 1972)

Глутаминаза (3.5.1.2, *L*-глутамин-амидогидролаза) играет важную роль в азотистом обмене веществ (¹⁻⁵). Она осуществляет гидролитическое отщепление амидного азота глутамина и может принимать участие в процессах мобилизации легко гидролизуемого азота в почве. Основная масса азота почвы входит в состав органических веществ и может быть доступна растениям только после их минерализации почвенными микроорганизма-

ми. Минерализация органического вещества почвы в основном осуществляется с участием ферментов. Следовательно, изучение активности ферментов почв представляет определенный интерес.

Активность глутаминазы почвы пока пе изучена, поэтому мы пытались разработать методику ее определения и выяснить некоторые вопросы действия этого фермента в различных типах почв.

Метод определения активности глутаминазы почвы основан на количественном

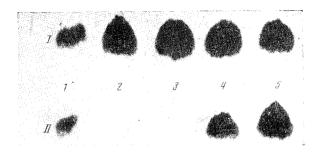


Рис. 1. Определение активности глутаминазы почвы по образованию глутаминовой кислоты в результате гидролиза глутамина. I — метчики: глутамин (I) и глутаминовая кислота (II); 2, 3 — контроль — стерилизованная почва: каштановая (2), чернозем (3); 4, 5 — воздушно-сухая почва: каштановая (4), чернозем (5)

учете аммиака, выделившегося в результате ферментативной реакции при взаимодействии глутамина с почвой. После ряда испытаний по выявлению соотношений между почвой и субстратем, а также условий оптимального действия фермента (pH, t) был разработан метод определения активности глутаминазы почвы.

Пля анализа почву высушивали при комнатной температуре в тени. очищали от остатков корней и просеивали через сито с отверстиями диаметром в 0,25 мм. Навески (1 г) почвы помещали в колбы на 50 мл, побавляли 5 мл 3% раствора глутамина на фосфатном буфере (рН 7,2) и 0,3 мл толуола в качестве антисептика. Колбы закрывали корковыми пробками, встряхивали и ставили в термостат при температуре 30° на 24 часа. По истечении времени взаимодействия субстрата с почвой в колбы добавляли 25 мл 0.5 N раствора хлористого калия, 5 мин. встряхивали для вытеснения из почвы поглощенного аммиака и содержимое колб фильтровали. Из фильтрата 10 мл переносили в прибор для отгонки аммиака водяными парами, прибавляли 5 мл 2% раствора щелочи и в течение 15 мин. производили перегонку. В опытах в качестве контроля служили стерилизованная почва (180° за 3 часа) и субстраты без почвы. Количество аммиака учитывали обратным титрованием 0,1 N КОН. Активность глутаминазы выражали в миллиграммах NH₃ на 1 г почвы за сутки. Ошибка определения — до 5%.

Исследования показали, что в ферментной системе почвы присутствует активная глутаминаза; при стерилизации почвы сухим жаром она полностью исчезает (табл. 1).

Хроматографическое определение активности глутаминазы почвы в результате гидролиза глутамина также показало (рис. 1), что по сравнению с метчиками (I) — глутамином (I), глутаминовый кислотой (II) — в опыте со стерилизованной почвой (2,3) глутаминовая кислота пе обнаруживалась, а с воздушно-сухой почвой (4,5) — в результате действия глутаминазы — накопилось значительное ее количество.

Таблица 1 Активность глутаминазы почв

Почва	Гумус,	N _{общ} , %	рН	Глутаминаза, мг NH ₃ на 1 г почвы	
				естеств. почва	стерили- зов. почва
Горно-луговая дерновая Коричневая леспая Чернозем выщелоченный Каштановая карбонатная Бурая полупустынная Солончак содовый	13,6 10,5 7,1 3,4 2,2 0,6	0,68 0,99 0,37 0,29 0,15 0,03	5,2 6,4 6,8 7,6 8,2 10,0	13,0 11,4 9,0 3,0 2,1 0,9	0,0 0,0 0,0 0,0 0,0 0,0

Активность глутаминазы в разных почвах различна. Высокая активность фермента обнаруживается в горно-луговых и лесных почвах, в черноземах она слабее, а в солончаках резко понижена. Почвы со средне- и тяжелосуглинистым механическим составом обладают более высокой глутаминазной активностью, чем легкие почвы. Это обусловлено наличием в тяжелых почвах значительного количества тонкодисперсных частиц, обладающих наиболее активной адсорбционной способностью. Глутаминаза активна в гумусовом горизонте; по профилю действие ее снижается в соответствии с уменьшением содержания органического вещества и количества микроорганизмов. Активность глутаминазы находится в прямой тесной связи с содержанием органического вещества и общего азота $(\eta=0.86\pm0.09,\ t=9,\ n=20)$.

Оптимум рН для активности глутаминазы в почве лежит в нейтральном интервале (рН 6,8—7,2). В различных типах почв смещение его незначительно, а именно 0,4 единицы *.

Таким образом, в результате исследования в различных типах почв обнаружена активность глутаминазы, разработан метод ее определения и выявлены некоторые особенности действия этого фермента в почвах. Изучение активности глутаминазы поможет познанию азотистого обмена в почве с целью его регулирования в связи с питанием растений.

Институт почвоведения и агрохимии Ереван Поступило 26 I 1972

цитированная литература

 1 М. Диксон, Э. Уэбб, Ферменты, ИЛ, 1966. 2 В. Л. Кретович, Введение в энзимологию, «Наука», 1967. 3 Номенклатура ферментов, М., 1966. 4 А. Е. Браун штей и, 1 V Международн. биологич. конгресс, Вена, 1958. 5 J. P. Greenstein, Adv. in Enzymology, 8 (1948).

^{*} Эти значения рН устапавливались при помощи трис- и фосфатных буферов.