УДК 549.67:538.13:538.27+541.12

МИНЕРАЛОГИЯ

И. А. БЕЛИЦКИЙ, В. Н. ЩЕРБАКОВ, С. П. ГАБУДА

ВЛИЯНИЕ ВЫСОКОГО ДАВЛЕНИЯ НА ГРАДИЕНТЫ ЭЛЕКТРИЧЕСКИХ ПОЛЕЙ НА ЯДРАХ A1²⁷ В ЭДИНГТОНИТЕ — Ba[Al₂Si₃O₁₀]•4H₂O

(Представлено академиком В. С. Соболевым 5 XI 1971)

Наличие в структурах цеолитов зпачительных по объему открытых полостей, заполненных катионами и молекулами H_2O , позволяет использовать их в качестве модельных для выяснения характера изменений химической связи в пеорганических полимерных каркасах пористых кристаллов под воздействием высокого давления.

В данной работе приведены результаты изучения я.м.р. Al^{27} в эдингтоните при давлении до 10 кбар. Эдингтонит $Ba[Al_2Si_3O_{10}] \cdot 4H_2O$ представитель группы волокиистых цеолитов (1), содержащий в пустотах

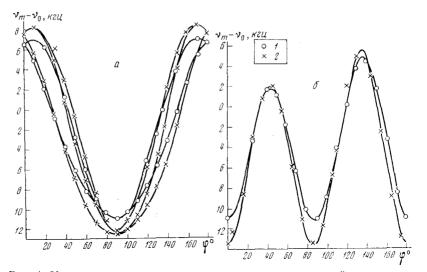


Рис. 1. Угловая зависимость частотного сдвига центральной компоненты спектра я.м.р. $\mathrm{Al^{27}}$ в эдингтоните (v_m-v_0) при вращении вокруг осей Y(a) и Z(b), где v_0 — частота резонанса алюминия в растворе $\mathrm{Al_2(SO_4)_3}$. I-1 бар, I-1 бар.

алюмокремнекислородного каркаса поны бария и молекулы H_2O (²). Прозрачные призматические {110}, {110}, {001} монокристаллы эдингтопита из Böhlet, Westergotland (Швеция) были получены нами в Минералогическом музее АН СССР.

Для исследования была изготовлена немагнитная бомба высокого давления (³) из термообработанной (НВС 39—41) бериллиевой бронзы Бр-Б2. Внешний диаметр бомбы 27 мм позволил использовать ее для наблюдения я.м.р. в модифицированном спектрометре я.м.р. РЯ-2301 со стандартным электромагнитом, имеющим зазор 35 мм. В рабочем объеме бомбы размещались датчик я.м.р. (высокочастотная цилипдрическая ка-

тушка, вмещающая образец диаметром 7 и высотой 12 мм), а также манганиновый манометр и термопара. В качестве среды, передающей давление, служила смесь обезвоженных трансформаторного масла и керосипа (1:1) или сероуглерод. Конструкция бомбы позволяла фиксировать в ней давление, созданное при помощи гидравлического пресса, и использовать ее автономно от пресса для изучения ориентационных и температурных зависимостей на монокристаллах.

Съемка спектров я.м.р. $A1^{27}$ велась на частотах 6 и 10 Мгц на спектрометре я.м.р. для широких линий с магнитной модуляцией и частотным прохождением спектра. Контроль частоты осуществлялся электронносчетным частотомером ЧЗ-30 с точностью не хуже 10^{-5} . При атмосферном

давлении удавалось наблюдать интенсивные сигналы я.м.р. Al^{27} , находящиеся вблизи определяемой гиромагнитным отношением ядер алюминия частоты и относящиеся к переходам $+^{1}/_{2} \rightleftharpoons -^{1}/_{2}$. Кроме того, наблюдались более слабые боковые сателлиты, отнесенные к переходам $\pm^{3}/_{2} \rightleftharpoons \pm^{1}/_{2}$ и при некоторых ориептациях очень слабые сигналы, отнесенные к переходам $\pm^{5}/_{2} \rightleftharpoons \pm^{3}/_{2}$.

При атмосферном давлении была изучена угловая зависимость распепления боковых сателлитов v'-v'', являющегося разпостью $+^3/_2 \rightleftharpoons +^1/_2$ N частот переходов $-3/_2 \rightleftharpoons -1/_2$. Изучалась также угловая зависимость сдвигов центральной компоненты спектра отпосительно сигнала я.м.р. свободных Al²⁷ (в нашем случае — водного раствора $Al_2(SO_4)_3$). На рис. 1 приведены полученные угловые зависимости сдвигов центральной компоненты спектра я.м.р. Al²⁷ в эдингтоните.

С повышением давления до нескольких сотен бар интенсивность боковых сателлитов падала настолько, что опи становплись пенаблюдае-

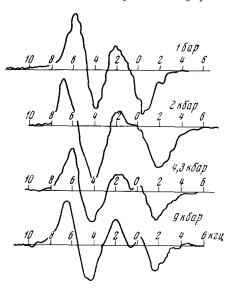


Рис. 2. Характер изменения спектров я.м.р. $A^{|27|}$ (переход между уровнями с $m = \pm |/2$) в кинттоните при повышении давления до 9 кбар. Ориентации кристалла [110] $\pm \vec{H}_0$, [001] составляет угол 45° с \vec{H}_0 . Нулевое деление соответствует резонансиой частоте $A^{|27|}$ в жидкой метке — растворе $A^{|27|}$ в жидкой метке — растворе $A^{|27|}$ в жид-

мыми. Поэтому при высоком давлении изучались только сдвиги (их угловые зависимости) центральной компоненты спектра. Характер изменения спектра я.м.р. Al^{27} с повышением давления показан на рис. 2.. Изменение этих сдвигов при возрастании давления до 9,5 кбар было линейным в пределах точности эксперимента (~3%). Угловые зависимости сдвигов центральной компоненты при высоком давлении приведены на рис. 1.

Появление боковых сателлитов в спектре я.м.р. Al²⁷ связано с взаимодействием квадрупольного момента ядер алюминия с неоднородными электрическими полями в кристалле (⁴, ⁵). Рассматривая квадрупольное взаимодействие в качестве возмущения (по отношению к зеемановскому взаимодействию магнитного ядра с внешним магнитным полем), мы рассчитали (⁴, ⁵) (в первом порядке теории возмущений) величипу расщепления сателлитов как функцию ориентации кристалла в магнитном поле, ориентации в кристалле главных осей тензора градиента электрического поля (г.э.и.) в месте локализании данного ядра, а также величины константы квадрупольной связи (к.к.с) и параметра асимметрии (η) тензора г.э.п. Во втором порядке теории возмущений те же величины определяют сдвиг центральной компоненты, называемый обычно сдвигом второго порядка.

Используя методику анализа расщеплений сателлитов и сдвигов второго порядка, разработанную Волковым (5), мы провели анализ полученных экспериментальных данных. Результаты анализа собраны в табл. 1, где приведены направляющие косинусы главных осей тепзора г.э.п. относительно направлений [400], [040] и [001] в кристалле, величина η и к.к.с. (e^2Qg/h , где e— заряд электрона, Q— квадрупольный

. Таблица 1 Значения к.к.с. и η для Al^{27} в эдингтопите при разных давлениях

	P = 1 5ap		Р = 9 кбар	
	Al ₁ , Al ₂	Al ₃ , Al ₄	Al₁÷Al₄	
$e^{2}Qq/h$, кгц η	$\begin{bmatrix} 2337, 5 \pm 10 \\ 0, 226 \pm 0, 01 \end{bmatrix}$	$\begin{bmatrix} 2334,5\pm 40 \\ 0,238\pm 0,04 \end{bmatrix}$	$\begin{bmatrix} 2870 \pm 100 \\ 0,23 \pm 0,03 \end{bmatrix}$	

 $\begin{tabular}{lllll} T аблица & 2 \\ \begin{tabular}{lllll} {\it Hanpab}ляющие косинусы* главных осей (x,y,z) тевзора г.э.п. по отношению к кристаллографическим осям X,Y,Z \\ & для Al^{27} в эдингтолите при $P=4$ бар \\ \end{tabular} \begin{tabular}{llll} \end{tabular}$

ſ	Кристал- логр. оси	Главные оси тензора		
		x	у	z
Al ₁ Al ₂ Al ₃	X Y Z X Y Z X Y Z	$\begin{array}{c} -0,031\pm5\\ 0,118\pm6\\ -0,992\pm9\\ -0,05\pm2\\ -0,190\pm5\\ -0,980\pm8\\ -0,244\pm9\\ -0,062\pm3\\ 0,968\pm2\\ -0,092\pm4 \end{array}$		0,725+7 -0,681±8 -0,102±8 0,726±9 -0,681±7 0,093±6 0,677±5 -0,724+6 0,124±8 0,685+1

^{*} Ошибка в определении величины направляющих косинусов указана для последнего знака.

момент ядра, q — наибольшая компонента г.э.п. и h — постоянная Планка) для атмосферного давления и давления 9,5 кбар. Меньшая точность данных, полученных при 9,5 кбар, обусловлена тем, что для анализа были использованы лишь сдвиги центральной компоненты, в то время как данные для атмосферного давления основываются в первую очередь на результатах анализа расщеплений сателлитов (заметим, что результаты анализа угловой зависимости сдвигов центральной компоненты спектра при атмосферном давлении совпадают с результатами анализа угловой зависимости величии v' — v'').

При рассмотрении полученных данных следует учитывать, что величина г.э.и. обратно пропорциональна кубу расстояний между зарядами, т. е. приблизительно обратно пропорциональна объему элементарной ячейки (6). Поэтому увеличение к.к.с. в 1,23 раза при давлении 9,5 кбар должно отвечать такому же уменьшению объема элементарной ячейки, что, по-видимому, на порядок превышает реально возможную величину. Причина столь сильного изменения величины к.к.с. может быть связана, в первую очередь, со значительным вкладом в г.э.п. песферического рас-

пределения электронной плотности ионов Al^{3+} из-за частично ковалентного характера межатомных связей в изучаемом алюмосиликате. Можно предполагать, что весьма малые изменения геометрии межатомных связей будут приводить к изменению распределения электронной плотности, что из-за близости к ядрам Al^{27} будет фиксироваться как сильное изменение величины к к.с. Al^{27}

Если бы сокращение решетки под действием гидростатического давления было во всех направлениях одинаково, орнентация главных осей тензора г.э.и. должна была бы остаться неизменной. В нашем же случае увеличение давления сопровождается поворотом тензоров г.э.н. вокруг оси [004]. Учитывая, что главная ось тензора г.э.п. дежит в плоскости (001), можно сделать вывод, что сжатие кристалла (и вытекающее из него изменение тензора г.э.н.) происходит главным образом в плоскости (001). Причину подобного явления нетрудно попять при рассмотрении структуры эдингтонита (2). Вытянутые вдоль оси [001] (Al. Si) — О-каркаса. элементарное звено которых имеет $[Al_2Si_3O_{10}]$, могут быть сжаты или вытянуты только лишь за счет изменения расстояний Si - O и Al - O. В то же время, сжатие структуры в плоскости (001) требует лишь поворота волокон вокруг их осей и изменения валентных углов $\mathrm{Si} - \mathrm{O} - \mathrm{Si}$ и $\mathrm{Si} - \mathrm{O} - \mathrm{Al}$ при атомах кислорола, соединяющих отдельные волокпа,

Подтверждением наличия поворота волокон является отмечавшееся выше изменение угла между проекциями главных осей тензоров г.э.п. (табл. 1) на относящихся к различным волокнам Al₁, Al₂ и Al₃, Al₄ с 4° при атмосферном давлении до 10° при 9,5 кбар. Отсюда еще нельзя получить величину реального поворота волокон, поскольку вклад в г.э.п. на Al²⁷ дает вся решетка и связь между изменением ориентации тензоров г.э.п. и поворотом цепочек имеет весьма сложный характер.

Сильные изменения (Al, Si) — О-каркаса эдингтонита при высоком давлении не могут не сказываться на подвижности содержащихся в каналах молекул H_2O . Измеренное нами протонное время релаксации T_2 в эдингтоните при 9,5 кбар в два раза меньше, чем при атмосферном давлении, что указывает на существенное уменьшение подвижности H_2O . Причиной плавного уменьшения подвижности H_2O в структуре может быть только увеличение потенциальных барьеров для диффузии, происходящее за счет сокращения длины H-связей вследствие уменьшения межатомных расстояний, в соответствии с данными я.м.р. Al^{27} .

Институт геологии и геофизики Сибирского отделения Академии паук СССР Новосибирск Поступило 28 IX 1971

Институт физики им. Л. В. Кирепского Сибирского отделения Академии наук СССР Красноярск

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ W. M. Meier, Zeolite Structures. Molecular Sieves, London, 1968, p. 28.
² W. H. Taylor, R. Jackson, Zs. Kristallogr., 86, 53 (1933). ³ Б. И. Обмонн, А. К. Мороз, И. А. Белицкий, В сборн. Экспериментальные исследования по минералогии, Новосибирск, 1971. ⁴ R. V. Pound, Phys. Rev., 79, 605 (1950). ⁵ G. M. Volkoff, Canad. J. Phys., 31, 820 (1953). ⁶ Д. Бенедек, в сбори. Твердые тела под высоким давлением, М., 1966.

13 Зак. 1498