VIIK 616-097.612.017-11/12

иммунология

Г. Ф. МАКСИМОВА, В. А. БАБИЧЕВ, Б. С. УТЕШЕВ

АВТОРАДИОГРАФИЧЕСКОЕ ИССЛЕДОВАНИЕ СЕЛЕЗЕНКИ НА РАННЕМ ЭТАПЕ ПЕРВИЧНОГО ИММУНОЛОГИЧЕСКОГО ОТВЕТА

(Представлено академиком В. Д. Тимаковым 13 IV 1972)

Исследованиями последних лет показано, что иммунологический ответ на различные антигсны начинается с пролиферации очень небольшого числа антигенчувствительных клеток. По приблизительным оценкам Кеннеди и его сотрудников (11), использовавших систему переноса, в селезенке интактных мышей содержится около 1000 клеток, реагирующих на эритроциты барана. В экспериментах Гроувса и сотрудников (1) с помощью диффузионных камер получена аналогичная величина.

В течение пролиферативной фазы первичного иммунологического ответа клеточная масса селезенки мышей увеличивается приблизительно на одну треть по сравнению с исходным состоянием (12, 10). Предполагается. что это увеличение обеспечивается за счет пролиферации лимфондных клеток, стимулированных к делению антигеном. Однако к концу индуктивной фазы ответа на эритроциты барана число антителообразующих клеток в селезенке составляет всего 1-1.5% от общего клеточного прироста. Из этого следует, что процессы, происходящие в лимфоидной ткани сслезенки, отвечающей на антиген, не ограничиваются делением и дифференцировкой одних лишь коммиттированных клеток-предшественников. Как показано Байфилдом и Серкарцем (3), уже через сутки после введения антигена начинается также продиферация клеток, формпрующих иммунологическую память. Кроме того, биохимическими и иммукохимическими методами установлено, что в это же время интенсивно делятся и клетки, синтезирующие неспецифические иммуноглобулины (1, ¹⁴).

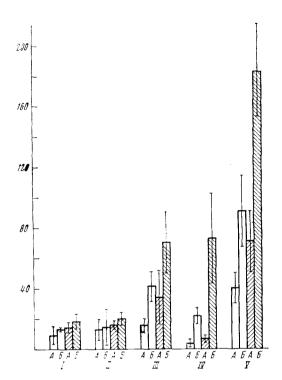
Однако на количество клеток в селезенке может влиять и такой фактор, как миграция лимфоцитов в нее и из нее (19). Но, к сожалению, информация этого рода в доступной нам литературе отсутствует. Кинетические исследования процессов деления в иммунной селезенке с помощью Н³-тимидина проводятся главным образом на моделях, использующих клеточные популяции, изолированные либо в течение всего иммунологического ответа (15, 4, 16), либо в момент включения метки (2). При изучении же лимфоидной ткани селезенки, мечение которой осуществлялось в условиях іп vivo (8, 9), исследователи обычно ограничиваются наблюдением таких структурных единиц органа, как герминальные центры. В этой связи представлялось интересным сравнить поведение меченых лимфоидных клеток в селезенке иммунизированных и пнтактных животных после импульсной метки Н³-тимидином. Для этого мы избрали вторые сутки первичного иммунологического ответа, которая характеризуется резким повышением инкорпорации тритированного тимидина в клетки селезенки (2).

В работе использовали мышей линии СВА весом 18—22 г. Животные получили по 0,5 мл 5% эритроцитов барана. Через 38 час. после иммунизации мышам вводили внутрибрюшинно Н³-тимидин в дозе 20 иС на мышь

(специфическая активность 290 мС / ммоль). В первой подгруппе животных забивали через 1 час, во второй — через 10 час. после введения метки (соответственно через 39 и 48 час. после антигенного стимула). В каждой подгруппе контрольными животными служили питактные мыши, получившие Н³-тимидин за 1 или 10 час. до забоя, соответственно. Мазки, приготовленные из клеточной суспензии селезенки, экспонировали с эмульсией в течение 8 недель, после чего их окрашивали по Романовскому.

Через 1 час после импульсной метки общий индекс мечения в селезенке неиммунизированных мышей был равен 4% (рис. 1). Если забой животных проводили через 10 час. после введения Н³-тимидина, то индекс мечения возрастал более чем в 2 раза. Индексы мечения в лимфоидном аппарате селезенки после однократного введения Н³-тимидина иммунизированным мышам в 2 раза выше соответствующих показателей у интактных животных. Это согласуется с авторадиографическими и радиометрическими данными для первичного (12, 10) и вторичного (15, 12) иммунологических ответов.

Между тем как в опыте, так и в контроле за 10 час. после введения H^3 -тимидина общий индекс мечения увеличился приблизительно в 2 раза. Следовательно, если говорить об относительном приросте меченых клеток в селезенке со временем после импульсной метки, то процент мечения лимфоидной популяции в целом не выявляет различий между иммунной и интактной селезенкой.


Олнако анализ индексов мечения внутри пазванных выше классов позволил обнаружить существенные кинетические сдвиги, характерные для данного периода иммунологического ответа. Как и ожидалось, в классе бластов и больших лимфоцитов меченые клетки встречались чрезвычайно часто: до 80 и 60% (соответственно) как через 1, так и через 10 час. после мечения. Существенных различий между опытом и контролем выявить не удалось. Средние и особенно малые лимфоциты через 1 час после инъекции тритированного предшественника как в опыте, так и в контроле включали Н³-тимидин чрезвычайно редко, но все же у иммунизированных животных в 2 раза чаще, чем у интактных (1% и 0,5% соответственно). Через 10 час. после введения метки пидекс мечения малых лимфоцитов в стимулированной селезенке увеличился до 12,2%, т. е. в 12 раз, а в пптактной всего лишь до 3,6%, т. е. в 7 раз. В классе средних лимфоцитов процент мечения за 10 час. наблюдения увеличился в опыте в 1,5 раза, а в контроле в 2 раза. Таким образом, относительный прирост меченых клеток в селезенке иммунизированных животных значительно выше в классе малых лимфоцитов и ниже в классе средиих лимфоцитов по сравнению с питактными животными. Следовательно, наиболее чувствительными к антигенному стимулу па данной стадии иммунологического ответа оказались малые лимфоциты,

Накопление меченых клеток в классах средних и малых лимфоцитов, составляющих 80—90% клеточной массы лимфоидной ткани селезенки, полностью обеспечивает нарастание индексов мечения в оныте и контроле, не нарушая нормальных соотношений между классами. Поэтому изменение частоты меченых лимфоцитов каждого класса, выраженной в промилле, фактически повторяет изменение индекса мечения внутри каждой субпопуляции. Так, наибольшие сдвиги отмечены в субпопуляциях средних и малых лимфоцитов (рис. 1).

Таким образом, у иммунизированных мышей относительный прирост меченых малых лимфоцитов происходит быстрее, чем в контроле. Поэтому, если через 1 час после введения Н³-тимидина меченые малые лимфоциты в иммунной селезенке в 2 раза превышают количество малых лимфоцитов в нормальном органе (в расчете на 1000 клеток), то через 10 час. разница этих показателей увеличивается до 3,4 раза. В результате этого доля малых лимфоцитов в меченой популяции лимфоидных клеток селезенки (табл. 1) возрастает в опыте в 4 раза (с 10 до 40%), а в контроле лишь в

2,5 раза (с 10 до 25%). Таким образом, новедение меченых лимфоцитов в селезенке иммунизированных мышей свидетельствует о гетерогенности лимфоидной ткани селезенки в отношении индуктивного влияния антигена. Так, в интервале от 38 до 48 час. после первичной антигенной стимуляции наиболее чувствительными к антигену являются клетки типа средних и, особенно, малых лимфоцитов. Возможно, что активированные к де-

Рис. 1. Результаты анализа включения Н³-тимидина в лимфоидные клетки селезенки мышей (количество меченых клеток в % о от всех лимфоинсосчитанных ных клеток). I — бласты, II — большие лимфоциты. *III* — средние лимфоциты, IV — малые $V \longrightarrow \text{cvm}$ лимфоциты, марно для всех классов, плазматичевключая ские клетки. Незаштрихованные столбики --мыши, получившие толь-Н3-тимидин троль), заштрихованные — получившие тимидин через 38 час. после введения эритроцитов барана. A, E животные, забитые через 1 час и через 10 час. после введения Н3-тимидина соответственно

лению клетки соответствуют пиронинофильным лимфоцитоподобным клеткам (2), которые первыми отвечают на антиген усилением включения Н³-тимидина.

В норме лимфондная ткань селезенки характеризуется стационарным состоянием (6). Поэтому удвоение индекса мечения в течение 10 час. и одновременное снижение средней интенсивности мечения до половины первоначальной величины, полученное нами у контрольных животных, свидетельствует о том, что меченые клетки за 10 час. наблюдения успели разделиться. Полученные результаты хорошо согласуются с данными Флиднера и соавторов (6). Эти исследования показали, что меченые лимфоциты нормальной селезенки делятся в течение первых 12 час. после однократного введения H³-тимидина. Под влиянием антигена лимфоидная популяция селезенки выходит из состояния динамического равновесия и превращается в растущую популяцию (12, 10). Если бы этот процесс осуществлялся только за счет деления лимфоцитов, находящихся в момент введения Н³-тимидина в селезенке, то увеличение индекса мечения сопровождалось бы разведением метки. Так, повышение индекса мечения в 2,5 раза в эксперименте должно было бы дать снижение средней интенсивности мечения на ядро приблизительно вдвое. Однако в опыте, в отличие от контроля, мы получили лишь незначительное уменьшение данного показателя: с 35,8 до 32,6 зерен на клетку. В пересчете на 4000 лимфоцитов это дало 2556 и 5852 зерна соответственно, т. е. увеличение индекса мечения сопровождалось нарастанием общей радиоактивности в селезенке, что, по-видимому, обусловлено поступлением в орган меченых клеток, находившихся вне его в момент введения метки.

Интервал между введением Н ³ -тими- дина и забсем животных	Бивсты			Больш ие лимфо циты			Средние иимфоциты			Малые лимфоциты		
	оныт (а)	конт- роль (б)	а/б	опыт (а)	конт- родь (б)	a/õ	опыт (а)	конт- роль (б)	аб	опы т (а)	конт- родь (б)	c/ő

Мечение внутри классов

А. 1 час	84,6	72,9	1.1,2	62.9	44,4	1,4	14,1	5,9	2,4	1,0	0,5	2,0
А. 1 час Б. 10 час.	74,5	74,6	1,0	63,2	57,0	1,1	21,7	11.9	1,8	12,2	3,6	3,4
Б: А	0,9	1,0	·	1,0	1,3		1,5	2,0	l —	12,2	7,2	

Структура меченой популяции

А. 1 час	20,8	21,6	1,0	22,1	30,5	0,7	47,3	38,4	1,2	9,8	9,5	[1,0]
А. 1 час Б. 10 час.	10,2	14,4	0,7	11,2	15,8	0,7	38,4	45,1	0.9	40,2	24.7	1,6
Б:А	0,5	0,7		0,5	0,5	_	0,8	1,2		4,1	2,5	

Примечание, Опыт — животные, получившие Н³-тимидин через 38 час. после введения эритроцитов барана; контроль — животные, получившие только Н³-тимидин.

Таким образом, накопление меченых лимфоцитов в селезенке происходит не только за счет активации процессов деления в самой селезенке, но, очевидно, и за счет притока в нее активированных к делению клеток. Следовательно, прирост клеточной массы селезенки в течение продиферативной фазы первичного иммунологического ответа в определенной степени обеспечивается и мигранией лимфоилных клеток в этот орган. Вероятно, пребывающая в селезенку популяция состоит главным образом из клеточных элементов типа малых и средних лимфоцитов и, возможно, обладает большими пролиферативными потенциями, чем селезепочные клетки. Что касается источника клеток, мигрирующих в селезенку, то решение этого вопроса выходит за рамки данного исследования. Можно только предположить, что на раннем этапе первичного иммунологического ответа у мышей в их селезенку поступают клетки из тимуса, для которого, как известно, характерна очень высокая клеточная продукция и клеточная потеря (13). В пользу этого предположения говорит и тот факт, что в системе перепоса тимоциты первыми отвечают на антиген волной митозов, опережая клетки костно-мозгового происхождения (5). Однако это не исключает участия последних в миграционных процессах, стимулированных антигеном.

Второй Московский государственный медицинский институт им. Н. И. Пирогова

Поступпло 6 IV 1971

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ А. Е. Гурвич, Г. И. Дризлих, Молек. биол., 1, 2, 279 (1967). ² В. И. Гусев, Виосинтез нуклепновых кислот, белка и антител в норме и при первичном иммунном ответе (цитохимическое исследование), Автореф. кандидатской диссертации. М., 1969. ³ Р. Вуfield, Е. Sercarz, J. Exp. Med., 129, 5, 897 (1969). ⁴ Е. Е. Сараlbo, Т. Макіпо dan, J. Immunol., 92, 2, 234 (1964). ⁵ А. J. S. Davies, Е. Leuchars et al., Transplantation, 5, 2, 222 (1967). ⁶ Т. М. Fliedner, М. Кевее et al., Ann. N. Y. Acad. Sci., 113, 2, 578 (1964). ⁷ D. L. Groves, W. E. Lever, T. Makinodan, J. Immunol., 104, 1, 148 (1970). ⁸ М. G. Hanna, Intern. Arch. Allergy. 26, 4, 230 (1965). ⁹ М. G. Hanna, D. Swartzendruber, C. C. Congdon, Germinal Centers in Immuno Responses, Berlin — Heidelberg — N. Y., 1967, p. 189. ¹⁰ G. Harris, S. R. Pelc, Immunol., 19, 6, 865 (1970). ¹¹ J. C. Kennedy, L. Simiinovitch et al., Proc. Soc. Exp. Biol. and Med., 120, 3, 868 (1965). ¹² T. Makinodan, T. Sado et al., Curr. Topics Microbiol. and Immunol., 49, 80 (1969). ¹³ W. D. Michalke, M. W. Hess et al., Blood, 33, 4, 541 (1969). ¹⁴ G. Urbain-Vansanten, Immunol., 19, 5, 783 (1970). ¹⁵ P. Urso, T. Makinodan, I. Immunol., 90, 6, 897 (1963). ¹³ J. D. Wakefield, G. J. Thorbecke, J. Exp. Med., 128, 1, 153 (1968). ¹⁷ H. P. Wagner, H. Cottieretal., Exp. Cell. Res., 46, 441 (1967).