Доклады Академии наук СССР 1972. Том 207, № 6

ХИМИЧЕСКАЯ ТЕХНОЛОГИЯ

В. Г. МАТЯШ, Л. И. ЛЕОНТЬЕВ, Б. З. КУДИНОВ, член-корреспондент АН СССР Г. И ЧУФАРОВ

О ВОССТАНОВЛЕНИИ АЛЮМОФЕРРИТОВ КАЛЬШИЯ В РАВНОВЕСНЫХ И КИНЕТИЧЕСКИХ УСЛОВИЯХ

Разрабатываемая в институте метаилургии УНЦ АН СССР схема комплексной переработки железо-алюминиевого сырья (1, 2) предусматривает в качестве одной из стадий восстановительный обжиг шихты. При этом образуется некоторое количество трудновосстановимых алюмоферритов кальция (°), изучение восстановления которых представляет научный и практический интерес.

В данной работе рассмотрены пекоторые закономерности восстановления синтезированных алюмоферритов кальция Ca₄Al₂Fe₂O₁₀, Ca₆Al₂Fe₂O₁₅,

Ca₆Al₄Fe₂O₄₅ H CaAl₂Fe₄O₄₀.

Исходные образцы готовились из смеси Fe₂O₂, Al₂O₃ и CaCO₃, спеканием на воздухе в течение 20 час. при температурах 1350 и 1200° С CaAl₂Fe₄O₁₀). Однофазность образнов подтвердилась химическим, рентге-

ноструктурным и кристаллооптическим анализами. Фазовый состав восстановленных образнов определялся методом съемки порошковых дебаеграмм с асимметричной закладкой пленки. Прецизионные измерения параметров кристаллической решетки проводились стандартным методом на дифрактометре УРС-50 ИМ. Равновесное давление кислорода над образцами определялось по методике, описанной в работе (4). Равновесные соотношения при восстановленин Са₄Аl₂Fe₂О₁₀ (браунмиллерит) изучались при температурах 900, 950, 1000, 1050 и 1100°. Экспериментально установлено, что равновесные составы фазы для каждой температуры остаются постоянными в интервале восстановления

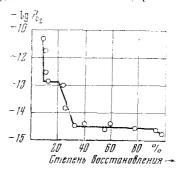


Рис. 1. Зависимость равновесного давления кислорода от степепи восстановления СаAl₂Fe₄O₁₀ при температуре 1000° С

5—95%. Рептгеноструктурный и кристаллооптический анализы показали, что в равновесии сосуществуют браунмиллерит, металлическое железо, трехкальпиевый алюминат и окись кальция. Это позволяет утверждать, что восстановление браунмиллерита происходит одноступенчато по реакции

$$Ca_4Al_2Fe_2O_{10} + 3H_2 = Ca_3Al_2O_6 + CaO + 2Fe + 3H_2O.$$
 (1)

Температурная зависимость константы равновесия реакции (1) может быть описана уравнением $\lg K_{p(1)} = -5940/T \pm 3.6$, из которого следует, что реакция (1) протекает с поглощением тепла.

Изучение равновесных соотношений при восстановлении Ca₆Al₄Fe₂O₁₅ и Ca₆Al₂Fe₄O₁₅ показало, что эти соединения восстанавливаются также одностадийно с образованием металлического железа, трехкальциевого

алюмината и окиси кальция (для $Ca_6Al_2Fe_4O_{15}$).

Восстановление CaAl₂Fe₄O₁₀, проводимое при температуре 1000°, протекает многоступенчато, о чем свидетельствует фазовый состав продуктов восстановления и зависимость равновесного давления кислорода $P_{\rm O_2}$ от степени восстановления α, приведенная на рис. 1. На первом участке (α =

$$^{3}/_{2}$$
 CaAl₂Fe₄O₁₀ + $_{1}I_{2} = ^{3}/_{2}$ CaAl₂O₄ + $_{2}$ Fe₃O₄ + $_{3}$ H₂O.

На втором участке ($\alpha=11-23\%$) происходит восстановление магнетита до вюстита на реакции

$$Fe_3O_4 + H_2 = 3FeO + H_2O.$$
 (3)

(2)

Этот вывод подтверждается и хорошей согласованностью значения константы равновесия реакции (3), вычисленной нами ($\lg K_p = 0.85$), с данными работы (5), где $\lg K_p = 0.79-1.0$.

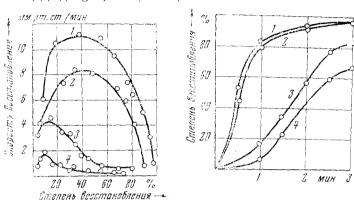


Рис. 2

Puc. 3

Рис. 2. Влияние температуры на кинетику восстановления CaAl₂Fe₄O₄₀; 1-900; 2-800; 3-700; 4-600° C

Рис. 3. Сравнение кинетики восстановления алюмоферритов кальция при температуре 900° С. $1-{\rm Fe_2O_3};~2-{\rm CaAl_2Fe_4O_{10}};~3-{\rm Ca_6Al_2Fe_4O_{15}};~4-{\rm Ca_4Al_2Fe_2O_{10}}$

На третьем участке ($\alpha=23-30\%$) обнаружен вюстит, нараметр кристаллической решетки которого уменьшается от 4,312 до 4,295 Å, что неплохо согласуется с данными работы (6). На четвертом участке ($\alpha=30-95\%$) протекает реакция восстановления вюстита.

Приведенные результаты позволяют, таким образом, утверждать, что CaAl₂Fe₄O₁₀ восстанавливается с образованием однокальциевого алюмината и магнетита, который в дальнейшем восстанавливается как самостоятельное соединение. Исследования кинетики восстановления алюмоферритов кальция проводили также на вакуумной установке (*). Опыты проводились при 600, 700, 800 и 900° и давлении водорода 300 мм рт. ст. Степень и скорость восстановления определяли по изменению давления водорода, а конечную степень восстановления— по убыли веса образца.

Как видно из рис. 2, с повышением температуры реакции заметно увеличивается скорость и степень восстановления $CaAl_2Fe_4O_{10}$. Достаточно полное и быстрое восстановление осуществляется уже при 800° . Из представленных на рис. 3 кинетических зависимостей восстановления (при 900°) алюмоферритов кальция и чистой окиси железа видно, что восстановимость $CaAl_2Fe_4O_{10}$ и Fe_2O_3 сопоставима, а $Ca_6Al_2Fe_4O_{15}$ и $Ca_4Al_2Fe_2O_{10}$ восстанавливаются с меньшей скоростью и в меньшей мере, чем Fe_2O_3 .

Институт металлургин Уральского научного цептра Академии паук СССР Свердловск Поступило 19 VI 1972

цитированная литература

⁴ А. И. Бычин, Б. З. Кудинов, Цветные металлы, № 2, 49 (1963). ⁴ Тр. ньст. металлургии УФАН СССР, в. 22, 3, 83 (1970). ³ Е. Маsanek, S. Jasienska, J. Iron and Steel Inst., **202**, № 4, 319 (1964). ⁴ В. Ф. Балакирев, Г. И. Чуфаров, ДАН, **138**, 161 (1961). ⁵ О. А. Есин, П. В. Гельд, Физическая химия пирометаллургических процессов, ч. 1, Свердловск, 1962, стр. 542. ⁶ Ю. Д. Третьяков, Термодинамика ферритов, Л., 1967, стр. 22.