Е.А. Сергейчук,

магистрант 2 курса напр. «Биология», e-mail: **os-ck@yandex.ru**,

е-тан: **os-ск@yanaex.ru**, науч. рук.: **H.Г. Галиновский**,

к.б.н., дои.,

ГГУ им. Ф. Скорины,

г. Гомель, Республика Беларусь

БИОЛОГО-ЭКОЛОГИЧЕСКИЕ ОСОБЕННОСТИ ГЕРПЕТОБИОНТНЫХ ЖЕСТКОКРЫЛЫХ БЕРЕГОВЫХ СООБЩЕСТВ ГОРОДА ГОРКИ МОГИЛЕВСКОЙ ОБЛАСТИ

Аннотация: В статье рассматриваются результаты жесткокрылых береговых сообществ исследований «Оршанское» г. Горки Могилевской области. Выявлены 39 жесткокрылых, рассмотрена биотопическая сообшеств жесткокрылых, приуроченность обитавших исследованных участках в 2016-2018 гг.

Ключевые слова: жесткокрылые, прибрежная экосистема, сообщество, доминирование, биопреферендум.

Напочвенные жесткокрылые играют в экосистемах важную роль. Благодаря высокому обилию, простоте учета, огромной биоценотической роли и хорошим индикаторным свойствам жужелицы стали популярной группой при изучении урбанизированных территорий [1, 2]. Изучение жесткокрылых (*Insecta, Coleoptera*) является составной частью исследований биоразнообразия. По изменению состава сообщества можно судить об изменениях окружающей среды определенных территорий.

Целью исследования являлось выявление видового состава и экологии герпетобионтных жесткокрылых береговых сообществ озера Оршанское г. Горки, Могилевской области.

Научная значимость работы заключается в получении новых данных по биологии видового состава и экологии жесткокрылых, обитающих на берегах городских водоемов города Горки Могилевской области, ранее не исследованных.

Материалом для исследования послужили собственные полевые сборы жуков, проведенные в течение апреля–июня 2016–2018 гг. на берегу Оршанского озера в г. Горки Могилевской области на трех стационарных участках:

- первый расположен на пляже Оршанского озера. Засоренность данного участка высокая. Растительность неразнообразная, скудная и угнетенная;
- второй и третий стационары расположены на противоположном берегу, где оборудованы места для отдыха, и посещаются в основном рыбаками. Отмечается высокая засоренность данного участка. Из растительности преобладают травы.

В результате проведенных исследований с 2016 по 2018 год на трех стационарных участках береговой зоны Оршанского озера г. Горки Могилевской области было коллектировано 296 особей жесткокрылых 39 видов, объединённых в 21 род, относящихся к 6 семействам. В ходе исследований нами был выявлен видовой состав и изучена степень доминирования жесткокрылых в исследованных сообществах (таблица 1).

Таблица 1 — Видовой состав и относительное обилие жесткокрылых исследованных территорий, %

Семейство и вид	2016 год			2017 год			2018 год		
	C1*	C 2	C 3	C1	C 2	C 3	C1	C 2	C 3
1	2	3	4	5	6	7	8	9	10
Carabidae Latreille, 1802	98,6	86,7	77,8	100	100	100	80,1	73,6	91,7
Agonum afrum (Duftschmid, 1812)	0	10	0	0	0	0	0	0	0
Agonum impressum (Panzer,1797)	0	0	0	0	0	11,1	0	0	0
Agonum sexpunctatum (Linnaeus,1758)	1,4	0	0	0	0	0	0	0	0
Amara aenea (De Geer,1774)	5,8	3,3	0	0	0	0	15	21,7	66,7
Amara communis (Panzer,1797)	0	0	0	2,7	0	0	0	4,3	8,3
Amara tibialis (Paykull,1798)	0	0	0	0	0	0	1,7	0	0
Anisodactylus signatus (Panzer,1797)	0	3,3	0	0	0	0	0	0	0
Asaphidion flavipes (Linnaeus)	1,4	0	0	0	0	0	0	0	0

Продолжение таблицы 1

1	2	3	4	5	6	7	8	9	10
Bembidion lampros (Herbst,1784)	1,4	0	0	0	0	0	0	0	0
Bembidion quadrimaculatum (Linnaeus, 1761)	8,8	3,3	0	0	0	0	0	0	0
Calathus erratus erratus (Sahlberg,1827)	5,8	0	0	0	0	0	25	4,3	4,2
Calathus fuscipes (Goeze,1777)	1,4	0	0	8,1	5,9	0	1,7	4,3	8,3
Carabus granulatus Linnaeus,1758	0	3,3	0	0	0	0	3,3	0	0
Carabus nemoralis O.F.Muller,1764	15,9	0	7,4	64,9	0	0	0	0	0
Chlaenius nitidulus (Schrank,1781)	2,9	3,3	0	0	0	0	0	0	0
Chlaenius tristis (Schaller,1783)	1,4	0	0	0	0	11,1	0	0	0
Europhilus fuliginosus (Panzer,1809)	0	0	11,2	0	0	0	0	0	0
Harpalus affinis (Schrank,1781)	1,4	0	0	0	0	0	1,7	0	0
Harpalus anxius (Duftschmid,1812)	1,4	0	0	0	0	0	0	0	0
Harpalus griseus (Duftschmid,1812)	0	0	3,7	0	0	0	0	0	0
Harpalus latus (Linnaeus,1758)	2,9	6,7	3,7	0	0	0	10	4,3	0
Harpalus rubripes (Duftschmid,1812)	8,8	0	3,7	0	11,8	0	0	0	0
Harpalus rufipes (De Geer,1774)	0	0	3,7	0	0	0	1,7	8,7	0
Harpalus tardus (Panzer,1797)	2,9	0	0	5,4	17,6	0	0	0	0
Loricera pilicornis (Fabricius,1775)	0	0	0	0	0	0	1,7	0	0
Oodes helopioides (Fabricius,1792)	0	6,7	3,7	0	0	11,1	1,7	0	0
Platynus assimilis (Paykull,1790)	0	0	0	2,7	0	44,5	0	0	0
Poecilus cupreus (Linnaeus,1758)	0	0	0	0	0	0	5	4,3	0
Poecilus versicolor (Sturm,1824)	10,2	0	3,7	0	29,4	11,1	11,7	17,4	4,2
Pterostichus melanarius (Illiger,1798)	0	0	0	0	5,9	0	0	0	0
Pterostichus nigrita (Paykull,1790)	20,5	43,5	37	16,2	29,4	11,1	0	0	0
Pterostichus strenuus (Panzer,1797)	4,3	3,3	0	0	0	0	0	4,3	0
Curculionidae Latreille, 1802	1,4	0	0	0	0	0	0	0	0
Sitona sulcifrons (Thunberg, 1798)	1,4	0	0	0	0	0	0	0	0
Dytiscidae Leach, 1815	0	13,3	22,2	0	0	0	0	0	0

Окончание таблицы 1

1	2	3	4	5	6	7	8	9	10
<i>Ilybius fenestratus</i> (Fabricius, 1781)	0	13,3	7,4	0	0	0	0	0	0
Rhantus grapii (Gyllenhal, 1808)	0	0	14,8	0	0	0	0	0	0
Elateridae Leach, 1815	0	0	0	0	0	0	1,7	0	8,3
Hypnoidus riparius (Fabricius,1792)	0	0	0	0	0	0	0	0	8,3
Selatosomus aeneus (Linnaeus,1758)	0	0	0	0	0	0	1,7	0	0
Scarabaeidae Latreille, 1802	0	0	0	0	0	0	1,7	0	0
Maladera holosericea (Scopoli,1772)	0	0	0	0	0	0	1,7	0	0
Tenebrionidae Latreille, 1802	0	0	0	0	0	0	16,5	26,4	0
Tenebrio molitor Linnaeus,1758	0	0	0	0	0	0	16,5	26,4	0
Всего экземпляров	69	30	27	37	17	9	60	23	24
Всего видов	19	11	11	6	6	6	15	10	6
Информационное разнообразие, Н'	2,54	1,9	2,01	0,49	0,7	0,69	2,22	2,02	1,16
Концентрация доминирования, d	0,09	0,21	0,16	0,44	0,18	0,17	0,13	0,13	0,45
Выравненность по Пиелу, Ј	0,86	0,79	0,84	0,27	0,39	0,38	0,83	0,88	0,65
Примечание: С1 – стационар 1, С2 – стационар 2, С3 – стационар 3									

В результате проведенных исследований сообществ жесткокрылых береговых сообществ озера Оршанское г. Горки были выявлены представители 6 групп жесткокрылых: береговые, болотные, водные, лесные, луговые и полевые виды.

Неравнозначное распределение наблюдалось на стационарах в разные годы. Так в 2016 г. были обнаружены все 6 групп жесткокрылых. В 2017 и 2018 гг. были отмечены только представители 5 групп, типичные гидробионты в ловушках не встречались, что может свидетельствовать о том, что в предыдущем году их нахождения в них случайно.

По видовому богатству и численности за три года исследования преобладали болотные, полевые и лесные виды. Видом, который встречался на стационарах 2016-2018 гг. является полевой вид $P.\ versicolor$ (таблица 1).

В целом комплексы жесткокрылых берегов озера «Оршанское» г. Горки Могилевской области характеризовались преобладанием болотных, полевых и лесных видов.

В целом комплексы жесткокрылых берегов озера «Оршанское» г. Горки Могилевской области характеризовались преобладанием болотных, полевых и лесных видов.

Анализируя по годам изучения, можно отметить тот факт, что происходит изменение числа биотопических экологических групп насекомых. Важно, что лидирующие группы видов особо не варьируют, а постоянны и практически одинаковы для всех данных береговых экосистем. В спектре биотопических преферендумов не обнаруживается группа водных видов жесткокрылых.

Исходя из результатов нашего исследования, болотные виды на стационарах в 2016 и 2017 гг. были представлены чаще всего жужелицей *Pt. Nigrita* (49 особей).

Численность болотных видов на стационарных участках отмечалась снижением каждый год исследований по мере роста рекреационного воздействия. Так, максимальное относительное обилие болотных видов в 2016 году было зафиксировано на стационаре №2 (63,3%), а минимальное — на стационаре №1 (24,7%). Наименьшее относительное обилие в 2017 г. отмечалось на стационаре №1 и составило 16,2%, а наибольшее — на стационаре №2 — 29,4%.

На исследуемых участках в 2018 г. болотные виды являлись рецендентами и субрецендентами: относительное обилие на стационаре №1 составило 1,7%, на стационаре №2 – 4,3%, а на стационаре №3 встречены не были (таблица 2).

Полевые виды были широко представлены на стационаре №1 (относительно обилие — 39,1%) в 2016 году (P. versicolor, B. quadrimaculatum, C. erratus, A. aenea). Наибольшее обилие полевых видов в 2016 году наблюдалось на стационаре №1 (39,1%), а наименьше — на стационаре №2 (10%). Однако, в 2017 году, наоборот, относительное обилие было максимальным на стационаре №2 (29,4%), а на стационаре №1 полевые виды встречены не были. Полевые виды доминировали и на стационарах в 2018 г. (C. erratus, A. aenea). Относительное обилие составило на стационаре №1 — 60,0%, №2 — 56,6% и №3 — 83,4% соответственно (таблица 2).

Преобладание полевых видов может быть связано с расположенным недалеко от места исследования

сельскохозяйственного поля и обилием рудеральной растительности.

К числу преобладающих лесных насекомых на стационарных участках в 2017 г. относятся следующие виды: *С. nemoralis* и *Р. assimilis* (таблица 1). На изучаемых участках в 2018 г. преобладали жуки вида *Н. latus*.

В 2017 году увеличивалось обилие особей лесных видов *С. nemoralis*, *Р. assimilis*, которые в 2018 г. встречены не были. Так, в первый год исследований, было зафиксировано относительное обилие на изучаемых участках — 27,5%, 6,7% и 14,8%, в 2017 году — обилие составило 67,6% и 44,4%, а в 2018 году обилие составило 30,5% и 26,6%. На втором участке наблюдалось снижение численности лесных видов с 6,7% в 2016 году до 0% в 2017 году.

На стационаре №3 в 2018 г. лесные виды также не зафиксированы.

Разнообразие лесных видов характеризуется присутствием лесополосы рядом со стационаром №1 и зарастание берега различными древовидными растениями, которые способны переносить избыточное увлажнение почвы рядом со стационаром №3, т.е. растительность данной территории создала оптимальные условия для преобладания лесных видов.

Необходимо отметить, что в 2017 году наблюдалось резкое увеличение обилия луговых видов. Так, в 2016 году максимальное обилие составляло 2,9%, в 2018 г. – 8,6%, а в 2017 оно колебалось от 16,2% до 41,2% (таблица 2).

В наименьше степени были зафиксированы береговые и водные виды.

Таким образом, исследованные экосистемы сложены преимущественно полевыми, лесными и болотными видами, при этом следует отметить, что стационарные участки, подверженные интенсивно рекреационной нагрузке в целом не отличаются от других.

Литература и примечания:

[1] Галиновский, Н.Г. Сравнительный анализ фаунистических особенностей жужелиц (Coleoptera, Carabidae) из урбоценозов с различной степенью антропогенной нагрузки /

- Н.Г. Галиновский, О.Р. Александрович // Актуальныя пытанні сучаснай навукі: Зборнік навуковых прац: У 2 ч. Минск: БДПУ. Ч. 1., 2004. С. 141-144.
- [2] Галиновский, Н.Г. К изучению (Ectognatha, Coleoptera) прибрежных урбоценозов реки Сож / Н.Г. Галиновский // Вестник Мордовского университета. Серия «Биологические науки». Саранск. N01. 2009. С. 15-16.
- [3] Песенко, Ю.А. Принципы и методы количественного анализа в фаунистических исследованиях / Ю.А. Песенко М.: Наука, 1982. 288 с.
- [4] Александрович, О.Р. Жуки жужелицы (Coleoptera, Carabidae) фауны Белоруссии / О.Р. Александрович // Фауна и экология жесткокрылых Белоруссии / О.Р. Александрович Минск: Навука і тэхніка, 1991. С. 37-78.

© Е.А. Сергейчук 2020