Доклады Академии наук СССР 1973. Том 209, № 1

УДК 581.1.032+577.15

ФИЗИОЛОГИЯ РАСТЕНИЙ

В. Я. АЛЕКСЕЕВА, Л. Х. РАМАЗАНОВА

АКТИВНОСТЬ И ИЗОФЕРМЕНТНЫЙ СОСТАВ ПЕРОКСИДАЗЫ ЛИСТЬЕВ БОБОВ В СВЯЗИ С ОБЕЗВОЖИВАНИЕМ

(Представлено академиком М. Х. Чайлахяном 31 VII 1972)

В настоящее время предполагается, что существование изозимов увеличивает адаптивные способности организмов при неблагоприятных воздействиях окружающей среды. В частности найдено, что изменение физиологического состояния растений по-разному отражается на изозимном спектре пероксидазы, важная роль которой в защитных реакциях растений показана рядом работ (1-1). Литература о влиянии обезвоживания на активность пероксидазы немногочисленна и противоречива (4, 5). Это объясняется, вероятно, прежде всего тем, что испытывалось действие обезвоживания различной степени. Вопрос о локализации пероксидазы и изменении изозимного спектра при обезвоживании не затрагивался.

В связи с изложенным выше целью нашей работы было выяснение влияния условий водоснабжения на активность и изоферментный спектр пероксидазы белков хлоропластов и цитоплазмы.

Объектом исследования служили листья бобов сорта Русские черные. Для анализа брались вполне сформировавшиеся листья второго яруса сверху. Опыт вегетационный. Частичное обезвоживание листьев создавали путем прекращения полива. Общее содержание воды в листьях в момент взятия пробы в контрольном варианте составляло 89,0%, в опытном – 80,1%. Хлоропласты изолировали методом дифференцированного центрифугирования в среде выделения следующего состава: 0.2 M трис-буфер, 0.005 M \Im ДТА, 0,001 M MgCl₂, 0,25 M сахароза в контрольном варианте, 0,5 M — в опытном. Молярность сахарозы взята с учетом сосущей силы листьев и хлоропластов. Буферные растворы брались в двойном объеме по отношению к навеске листьев. Растертую массу отжимали через полотно и центрифугировали при 500g для осаждения клеточных стенок и ядер. Надосадочную жидкость центрифугировали для осаждения хлоропластов при 2000 д. Цитоплазму получали центрифугированием надосадочной жидкости 30000 д. Осадок хлоропластов дважды промывали путем последовательного суспендирования в среде выделения и осаждения центрифугированием. Хлоропласты разрушали осмотическим шоком и выделяли растворимые и труднорастворимые (структурные) белки хлоропластов (⁶). Все операции по выделению проводили на холоду. Пероксидазную активность белков цитоплазмы определяли методом А. Н. Бояркина с бензидином (1), а также спектрофотометрически с пирогаллолом и гваяколом (8). В структурных балках хдоропластов активность определяли с бензидином и пирогаллолом. Качественный состав белков исследовали методом электрофореза в полиакриламидном геле (⁹). В каждую трубочку с гелем вносили выравненное по Лоури в модификации Потти (10) количество белка. Для выявления изоферментов пероксидазы использовали реакции с бензидином, гваяколом и пирогаллолом. Общее число белковых компонентов обнаруживали с помощью красителя кумасси ярко-голубого.

Результаты по распределению пероксидазной активности и влиянию обезвоживания представлены в табл. 1.

Изучение активности белков цитоплазмы и хлоропластов с типичными субстратами пероксидазного действия показало, что пероксидазная активность проявляется всеми исследованными белками. Обнаружено, однако, что в реакции с бензидином более активны белки хлоропластов, а с гваяколом — белки цитоплазмы (проявление субстратной специфичности пироксидазы, локализованной в различных частях клетки). С пирогаллолом уровень активности примерно одинаков для белков хлоропластов и цитоплазмы.

Пероксилазная активность белков *

Таблица 1

inchonen, ashan artibhocib demob			
Субстраты	Цитоплазмен- ные белки	Белки хлоропластов	
		растворимые	структурные
Бензидин, сек $^{-1}$ Гваякол, ΔE в 1 мин. на 1 мг белка Пирогаллол, ΔE в 1 мин. на 1 мг белка	$0,303 \\ 0,368 \\ 1,59 \\ 2,52 \\ 2,74 \\ 2,36$	$\begin{array}{r} 0.854 \\ \hline 3.61 \\ 0.19 \\ \hline 0.66 \\ 3.68 \\ \hline 2.76 \end{array}$	$ \begin{array}{r} 2,42 \\ 2,23 \\ 2,80 \\ 2,41 \end{array} $

^{*} Числа над чертой — полив, под чертой-засуха.

Под влиянием обезвоживания наблюдается повышение активности с бензидином у растворимых белков хлоропластов, незначительное — у цитоплазменных белков. Изменения активности структурных белков хлоропластов слабо выражены. В засуху у цитоплазменных и растворимых белков хлоропластов повышается активность с гваяколом. В реакции с пирогаллолом все изученные белки ведут себя одинаково: под влиянием обезвоживания активность пероксидазы снижается, т. е. направленность изменения активности с этим субстратом противоположна наблюдавшейся с бензидином и гваяколом.

Таким образом, определение пероксидазной активности с различными субстратами позволило выявить субстратную специфичность пероксидазы изученных белков, а также ее изменения под действием обезвоживания. Обезвоживание оказало влияние на субстратную специфичность цитоплазменных белков и растворимых белков хлоропластов. С целью выяснения возможных причин изменения активности и субстратной специфичности белков проводили электрофорез в полиакриламидном геле. Результаты по электрофоретическому разделению белков в полиакриламидном геле представлены на рис. 1. Обнаружено 20 анодных (щелочной гель) компонентов в цитоплазменных белках, 13-в растворимых, 7-в структурных белках хлоропластов. При сравнении анодных изоферментных спектров белков можно видеть, что они различаются набором изозимов в зависимости от использованного субстрата. Наибольшее число изоферментов со всеми субстратами найдено в цитоплазменных белках, наименьшее - в труднорастворимых белках хлоропластов. С бензидином проявляет активность большее число белковых компонентов, чем с остальными субстратами. Выявленные изменения пероксидазной активности под влиянием обезвоживания проявляются в изозимном спектре, что выражается в изменении активности (ширине или интенсивности окрашивания полос субстратами), активации или инактивации отдельных белковых компонентов. Так, в цитоплазменных белках при обезвоживании компоненты с R_1 0.05; 0.25 окраниваются бензидином интенсивнее, чем в поливе. В засуху обнаружена более высокая активность с гваяколом всех компонентов цитоплазменных белков. Пирогаллолом выявляется на один компонент меньше в засуху, что соответствует активности, обнаруженной в этих белках.

Обезвоживание оказало заметное влияние на активность и изозимный спектр растворимых белков хлоропластов. С бензидином активны два белковых компонента в контрольном варианте, три—в засуху. С пирогаллолом и гваяколом число изозимов при обезвоживании не меняется. С гваяколом наблюдается увеличение активности изоферментов в засуху, с пирогаллолом обнаруживается более высокая активность изоферментов поливного варианта. Обезвоживание не оказало заметного влияния на белковый спектр (крашение кумасси) и распределение компонентов между белками

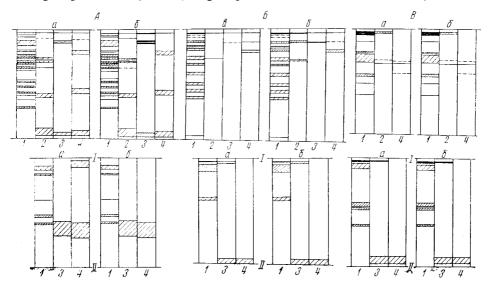


Рис. 1. Диаграммы электрофоретического разделения белков цитоплазмы (A), растворимых (B) и структурных (B) белков хлоропластов. I — анодные компоненты, II — катодные компоненты, a — контроль, b — засуха. Субстраты: b — кумасси, b — бензидин, b — гваякол, b — пирогаллол

цитоплазмы и хлоропластов. Что касается структурных белков хлоропластов, то никаких различий в изозимном спектре (с бензидином и пирогаллолом) между вариантами не найдено. Изоферментный спектр структурных белков хлоропластов более стабилен, чем растворимых белков и белков цитоплазмы.

Таким образом, изменение пероксидазной активности белков под влиянием обезвоживания является следствием изменений в активности и субстратной специфичности отдельных изозимов белкового спектра. И поскольку обезвоживание не оказало влияния на соотношение белковых компонентов спектра, можно предположить, по-видимому, что отмеченные изменения активности изозимов — следствие их качественных превращений.

Катодных компонентов значительно меньше у всех исследованных белков. С бензидином катодные компоненты активности не проявляли. Обезвоживание не оказало влияния ни на белковый, ни на изоферментный спектр при разгонке белков к катоду.

Полученные нами данные позволяют сделать предположение о приспособительном характере выявленных изменений в связи с установленным фактом увеличения доли пентозофосфатного пути дыхания на первом этапе обезвоживания у Русских бобов (11), когда растения способны адаптироваться к действию неблагоприятного фактора. В свою очередь, как известно (12), с пентозофосфатным путем связана активация флавиновых оксидаз, с которыми пероксидаза составляет сопряженную систему (13, 14).

Казанский институт биологии Академии наук СССР Поступило 18 VII 1972

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ Б. А. Рубин, М. Е. Ладыгина, В. А. Аксенова, В кн. Функциональная биохимия клеточных структур, «Наука», 1970, стр. 349. ² Б. А. Рубин, Е. Н. Лущинская, Внохимия, 34, в. 4, 674 (1969). ³ И. Г. Сулейманов, Л. Х. Рамазанова, В. Я. Алексеева, ДАН, 202, в. 3, 718 (1972). ⁴ Н. С. Петинов, К. М. Малышева, Физиол. раст., 7, в. 5, 553 (1960). ⁵ Е. Л. Лукичева, В сборн. Физиологические процессы и продуктивность яровой пшеницы, Алма-Ата, 1968. ⁶ В. И. Сафонов, М. П. Сафонова, Физиол. раст., 16, в. 1, 161 (1969). ⁷ А. Н. Бояркин, Биохимия, 16, в. 4, 352 (1951). ⁸ Л. Л. Еvans, N. А. Alldridge, Phytochemistry, 4, 499 (1965). ⁹ В. И. Сафонов, М. П. Сафонова, Физиол. раст., 16, в. 2, 350 (1969). ¹⁰ V. Н. Роtty, Anal. Biochem. ²⁹, 3, 535 (1969). ¹¹ Н. С. Петинов, А. А. Арбаров, Физиол. раст., 13, в. 3, 479 (1966). ¹² П. А. Колесников, С. В. Зорэндр., Физиол. раст., 18, в. 2, 275 (1971). ¹³ Б. А. Рубин, М. Е. Ладыгина, Энзимология и биология дыхания растений, М., 1966. ¹⁴ О. А. Семихатова, Смена дыхательных систем, «Наука», 1969.