УДК 539.143.44+549.612.3

МИНЕРАЛОГИЯ

В. Ф. БЕЛОВ, В. И. КУЗЬМИН, Т. А. ХИМИЧ, Н. В. ДОБРОВОЛЬСКАЯ, М. Н. ШИПКО

О ПРИМЕНЕНИИ МЁССБАУЭРОВСКОЙ СПЕКТРОСКОПИИ ДЛЯ ИССЛЕДОВАНИЯ ЖЕЛЕЗИСТЫХ ТУРМАЛИНОВ

(Представлено академиком Д. С. Коржинским 27 І 1972)

Для установления физико-химических параметров среды минералообразования часто анализируются индикаторные отношения Fe/(Fe+Mg), $(FeO+Fe_2O_3)/(FeO+MgO+Fe_2O_3)$ и FeO/(FeO+MgO) в сосуществующих магнезиально-железистых силикатах переменного состава. Используются в этих же целях и соотношения между Fe^{3+} и Fe^{2+} . При этом подчеркивается важность определения структурной позиции исследуемых катионов в элементарной ячейке минерала для точной интерпретации получаемых числовых характеристик $\binom{4}{3}$.

Для таких исследований особый интерес может представить турмалин — сложный алюмоборосиликат кольцевой структуры с широкими вариациями состава, обусловленными изоморфными замещениями как в катионной части, так и в основном радикале (3 , 4). Эти особенности кристаллохимии определяют возможность использования турмалина в качестве типоморфного минерала, особенно с учетом его распространения в месторождениях различных генетических типов. Однако до настоящего времени четкой зависимости между P-T-условиями, характером минералообразующей среды и составом минералов группы турмалина не установлено. В известной степени это объясняется неясностью некоторых деталей его структуры, а также трудностью раздельного определения $\mathrm{Fe^{3+}}$ и $\mathrm{Fe^{2+}}$ в турмалинах методами химического анализа.

С открытием эффекта Мёссбауэра появилась возможность уточнения структуры железосодержащих силикатов и определения в них соотношений между закисным и окисным железом. К настоящему времени выполнено несколько работ по мёссбауэровской спектроскопии в железистых турмалинах (5-7). В них указывается на наличие двух неэквивалентных структурных положений Fe в 6-ной координации, различающихся степенью отклонения октаэдра от кубической симметрии.

В данной работе мёссбауэровские спектры были использованы не только для уточнения структурного положения железа, но и для определения отношения Fe³⁺ / Fe²⁺ в ряде образцов железистых турмалинов. Анализ проводился на установке электродинамического типа (³) при комнатной температуре. В качестве источника использовался изотоп Co⁵⁷ в матрице из палладия. Поглотителем являлся измельченный до порошка исследуемый образец, приготовленный на парафиновой основе.

Для изучения было взято 5 образцов турмалина шерло-дравитового ряда с различным содержанием железа (табл. 1). Три пробы отобраны из силикатно-касситеритовых жильных зон на разных горизонтах Валькумейского оловорудного месторождения на Чукотке. Четвертый образец взят из сподумен-клевеландитовых пегматитов Туркестанского хребта. Последняя проба представлена шерлом из линзовидных турмалин-полевошпатовых выделений в мигматизированных докембрийских гнейсах Кокчетавской глыбы (Северный Казахстан).

Результаты химического определения железа, измерения магнитной восприимчивости и исследований мёссбауэровских спектров (м.с.) турмалина

N 06p.	Адрес и краткое описание образда	Результаты химического определ. *, вес.%		. Fe ₂ O ₃) . на FeO,	Результаты определ. по м. с вес.%		н. вос- 1ВОСТЬ,	Заселенность позиций		
		$\mathrm{Fe_2O_3}$	FeO	z (FeO + B nepecy.	Fe ₂ O ₃	FeO	Уд. магн. вос- приимчивость, 10° см ³ /г	A $\Delta = 2.4$ MM/CER	$ \begin{array}{c} B \\ \Delta = 1.85 \\ \text{мм/сек} \end{array} $	$\Delta = 1,35$ мм/ се к
1	Валькумей, гори- зонт + 10 м, темно-зе-	4,23	6,29	10,10	1,26	8,84	16,7	0,71	0,17	0,12
2	леный тонкоигольча- тый турмалин Там же, горизонт —50 м, зеленовато-ко- ричневый тонко-	1,10	10,43	11,43	1,84	9,59	19,6	0,71	0,17	0,12
3	игольчатый турмалин Там же, горизонт +60 м, темно-зеленый тонкопризматиче-	4,23	7,60	11,41	1,26	10,27	19,8	0,71	0,17	0,12
4	ский турмалин Туркестанский хре- бет. буровато-зеле-	. Не опред.	10,76	10,76	_	10,76	18,6	0,71	0,17	0,12
5	ный крупнокристал- лический турмалин Ковчетавская обл., линзовидные выделе- ния черного турма- лина в гнейсах	10,26	7,83	17,06	2,30	14,76	\$0,2	0,5	0,28	0,22

^{*} Аналитики К. А. Твердохлебова, Г. П. Синюгина и А. А. Чебурахина (Всесоюзный институт минерального сырья).

По значениям магнитной восприимчивости (см. табл. 1) все образцы парамагнитны. Следовательно, в мёссбауэровских спектрах этих турмалинов при комнатной температуре не должна наблюдаться сверхтонкая структура.

Разложение сложных экспериментальных спектров было проведено на ЭВМ (БЭСМ-4) по программе, разработанной в предположении лоренцовых форм отдельных составляющих линий. В основе программы лежит минимализация функционала

$$F = \sum_{\substack{i \text{ по всем} \\ \text{каналам}}} \left(B - \sum_{\substack{k \text{ по всем} \\ \text{линиям}}} \frac{I_k \cdot T_{k/4}^2}{(V_i - V_k)^2 + T_{k/4}^2} - f_i\right)^2 \Bigg| f_i,$$

где B — фон; I_k , T_k — соответственно интенсивность и полуширина k-й линии; V_i и V_k — текущая и резонансная скорость k-й линии; f_i — экспериментальное значение интенсивности на i-м канале.

Для минимализации был применен достаточно эффективный локальный метод Рафсона — Ньютона с параболической интерполяцией к минимуму (9). Спуск к минимуму осуществлялся направленно и был проведен вначале для группы переменных B, I_k и V_k при постоянных T_k , а затем для B, I_k и T_k при постоянных V_k .

Последовательное разложение мёссбауэровского спектра обр. № 4 привело к трем первичным дублетам A, B, C с равными значениями изомерного сдвига в 1,15 мм/сек (рис. 1, 4). Это соответствует высокоспиновому Fe^{2+} в силикатах (10 , 11). Аналогичному анализу подверглись спектры остальных четырех образцов (рис. 1, I-3, 5). В них была обнаружена дополнительная дублетная линия D с величиной изомерного сдвига 0,55 мм/сек, что отвечает высокоспиновому Fe^{3+} .

Дублеты A-C в первых четырех образцах имеют одни и те же значения квадрупольного расщепления, равные 2,4; 1,85 и 1,35 мм/сек соответственно (см. табл. 1). Это указывает на наличие трех неэквивалентных позиций Fe^{2+} в решетке турмалина, что, по-видимому, отражает разной сте-

пени искажения октаэдрических координационных полиэдров Fe^{2+} . Квадрупольное расщепление дублета D в обр. \mathbb{NN} 1—3 равно 0,65 мм/сек и со-

ответствует положению Fe³⁺ в 6-ной координации (¹¹).

Несколько отличным от предыдущих оказался спектр обр. № 5 (рис. 1, 5). Значительное уширение линии на этом спектре создает впечатление размазанности пиков. При их разложении были использованы положения исходных линий дублетов от Fe^{2+} и Fe^{3+} , полученные при анализе спектров первых четырех образцов.

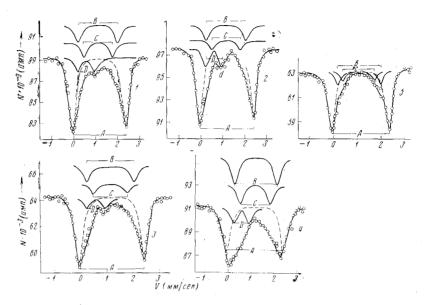


Рис. 1. Мёссбауэровские спектры железистых турмалинов (обр. М.М. 1—5). Спектры разложены на три дублета A-C от понов Fe^{2+} и дублет D — от понов Fe^{3+}

Некоторая уширенность отмечается и для дублетной линии D, отвечающей Fe^{3+} во всех спектрах. По-видимому, это связано с неразрешенностью данного пика, состоящего из нескольких первичных дублетов. В связи со слабой интенсивностью этого дублета, обусловленной низкой относительной концентрацией Fe^{3+} в анализированных образцах, разложение его представляет значительную трудность.

По отношениям площадей, занимаемых A, B и C, были определены относительные заселенности соответствующих структурных позиций Fe^{2+} (12). Из табл. 1 видно, что во всех образцах турмалина наиболее заселенными оказываются позиции с наибольшим квадрупольным расщеплением. Это свидетельствует о том, что большая часть Fe^{2+} в турмалине занимает октаэдрические пустоты с наименьшим отклонением от кубической симметрии (11). Характерно, что при колебаниях в содержании железа от 10,0 до 11,5% заселенность структурных позиций практически не меняется (обр. №№ 1—4). При более высокой железистости в позиции A оказывается уже не 0,71 Fe^{2+} , а лишь 0,50, в то время как заселенность позиций B и C увеличивается (обр. № 5).

Аналогичным способом, по площадям дублетных линий A-D были рассчитаны отношения $\mathrm{Fe^{3+}}/\mathrm{Fe^{2+}}$ для четырех образцов и соответствующие им исходные концентрации $\mathrm{Fe^{2+}}$ и $\mathrm{Fe^{3+}}$ по сумме $\mathrm{FeO}+\mathrm{Fe_2O_3}$ в пересчете на FeO , полученной при химическом анализе. Сравнение мёссбауэровских и химических определений FeO и $\mathrm{Fe_2O_3}$ в турмалинах обнаруживает в большинстве случаев существенные расхождения при почти постоянном резком завышении $\mathrm{Fe_2O_3}$ по химическому анализу (см. табл. 1).

Известно, что в процессе химического анализа железосодержащих силикатов часто происходит окисление некоторой доли FeO (11). Мёссбауэровские исследования, проводимые без нарушения кристаллической структуры минерала, лишены этого недостатка. Следовательно, для более точного определения содержаний FeO и Fe₂O₃ в турмалине целесообразно использовать мёссбауэровскую спектроскопию в комплексе с химическим анализом суммарного железа.

Институт кристаллографии Академии наук СССР Поступило 14 I 1972

Всесоюзный научпо-исследовательский институт миперального сырья Москва

ШИТИРОВАННАЯ ЛИТЕРАТУРА

¹ А. А. Маракушев, Сборн. Физико-химические проблемы формирования горных пород и руд, 1, Изв. АН СССР, 1961. ² Л. Л. Нерчук, ДАН, 174, № 4, 934 (1967). ³ Н. В. Белов, Е. Н. Белова, ДАН, 69, № 2, 185 (1949). ⁴ Н. В. Белов, Минералогич. сборн., № 22, в. 1, Львов (1968). ⁵ М. Dе Coster, Н. Роllak, S. S. А melinckx, Phys. Stat Sol., 3, № 2, 283 (1963). ⁶ И. С. Желудев, В. Ф. Белов, Изв. АН СССР, сер. физич. 31, № 7, 1117 (1967). ⁷ А. С. Марфунин, А. Р. Мкртчанидр., Изв. АН СССР, сер. геол., № 2 (1970). ⁸ Т. А. Химич, В. Ф. Белов идр., ЖЭТФ, 57, 395 (1969). ⁹ В. Ф. Белов, М. Н. Шинкои др., ФТТ, 13, в. 7, 2018 (1971). ¹⁰ L. R. Walker, G. K. Wertheim, V. Jассагіпо, Phys. Rev. Letters, 6, 60 (1961). ¹¹ Г. Бенкрофт, А. Меддок, Р. Барнс, Сборн. Физика минералов, М., 1971. ¹² R. G. Burns, R. А. Ноwie, Nature, 213, 1221 (1967).