УЛК 513.881

MATEMATUKA

М. А. ГОЛЬДМАН, С. Н. КРАЧКОВСКИЙ ОБ УСТОЙЧИВОСТИ НЕКОТОРЫХ СВОЙСТВ ЛИНЕЙНОГО ЗАМКНУТОГО ОПЕРАТОРА

(Представлено академиком В. И. Смирновым 28 VI 1972)

В большинстве исследований устойчивости различных свойств линейного замкнутого оператора, действующего в банаховом пространстве X, предполагается, что по крайней мере одно из чисел — размерность пространства нулей $\mathcal{N}(A)$ оператора A или коразмерность его области значений $\mathcal{R}(A)$ — конечно. Это предположение влечет существование непрерывного линейного оператора проектирования на $\mathcal{N}(A)$ или на $\mathcal{R}(A)$. Нашей задачей является исследование устойчивости таких свойств опера-

тора, как замкнутость
$$\mathscr{R}(A)$$
, включение $\mathscr{N}(A) \subseteq \mathfrak{M}(A)$ (= $\prod_{n=1}^{\infty} \mathscr{R}(A^n)$),

величина размерности пространств $\mathcal{N}(A)$ и $\mathcal{R}(A)^{\perp}$ и ряда других свойств; при этом оба упомянутых выше числа могут быть бесконечными, но предполагается существование непрерывного линейного оператора проектирования Q_A пространства X на $\mathcal{R}(A)$; допустимыми возмущающими операторами будут малые по норме коммутирующие с A линейные операторы B. Кроме общепринятых обозначений, используются также обозначения, введенные в нашей статье $\begin{bmatrix} 1a \\ 1 \end{bmatrix}$.

Пусть $\mathcal{R}(A)$ замкнуто в X. Обозначим через \hat{A} какой-либо однородный оператор на $\mathcal{R}(A)$ со значениями в $\mathcal{D}(A)$, удовлетворяющий условиям: $A\hat{A} = I_{\mathcal{R}(A)}$ и $\|\hat{A}y\| \le C_A\|y\|$ $\forall y \in \mathcal{R}(A)$, где $C_A > 0$ не зависит от y. Обозначим далее через S(B), T(B) и U(B) операторы, определяемые равенствами

$$S(B) = \sum_{n=0}^{\infty} (-1)^n B^n \hat{A}^n, \quad T(B) = \sum_{n=0}^{\infty} (-1)^n (\hat{A}B)^n, \quad U(B) = \sum_{n=0}^{\infty} (-1)^n (\hat{A}Q_AB)^n.$$

При условиях $\mathcal{N}(A) \subseteq \mathfrak{M}(A)$, $BA \subseteq AB$ и $\|B\| < C_A^{-1}$ для первых двух рядов и условии $\|B\| < (C_A \|Q_A\|)^{-1}$ для третьего ряда можно считать, что $\mathcal{D}(S(B)) = \mathcal{D}(T(B)) = \mathfrak{M}(A)$ и $\mathcal{D}(U(B)) = X$. Легко видеть, что S(B)x, $T(B)x \subseteq \mathcal{N}(A+B)$ и $U(B)x \subseteq \mathcal{N}(A+Q_AB)$ $\forall x \in \mathcal{N}(A)$.

Теорема 1. Пусть X — банахово пространство; A — линейный замкнутый оператор с областью определения $\mathcal{D}(A) \subseteq X$ и замкнутой в X областью значений $\mathcal{R}(A)$, причем $\mathcal{N}(A) \subseteq \mathfrak{M}(A)$; B — оператор из L(X,X), коммутирующий с A $(r. e. <math>BA \subseteq AB$).

Тогда при достаточно малых B:

- 1) pacteop пространств $\mathcal{N}(A)$ и $\mathcal{N}(A+B)$ сколь угодно мал;
- - 3) $\mathcal{N}(A+B) \subseteq \overline{\mathfrak{M}(A+B)}$.

Доказательство. 1) Пусть $x \in \mathcal{N}(A)$ и $\|x\| = 1$; тогда $\rho(x, \mathcal{N}(A+B)) \leqslant \|x - S_{\mathcal{N}}(B)x\| \leqslant \sum_{n=1}^{\infty} \|B^n A^n x\| \leqslant C_A \|B\| (1 - C_A \|B\|)^{-1}$, чем

показана близость $\mathcal{N}(A)$ к $\mathcal{N}(A+B)$. Обратно, пусть $x \in \mathcal{N}(A+B)$ и $\|x\|=1$; тогда Ax=-Bx, $x=-\hat{A}Bx+x'$, где $x'\in \mathcal{N}(A)$, и $\rho(x,\mathcal{N}(A))\leqslant \|x-x'\|=\|\hat{A}Bx\|\leqslant C_A\|B\|$, т. е. $\mathcal{N}(A+B)$ близко к $\mathcal{N}(A)$ (заметим, что последнее установлено с использованием только замкнутости A и $\mathcal{R}(A)$).

2) Все три равенства доказываются совершенно одинаково. Будем вести запись применительно к оператору $S_{\mathcal{A}}(B)$. Так как $\mathcal{R}(S_{\mathcal{A}}(B)) \subseteq \mathcal{N}(A+B)$, где $\|B\| < C_{\mathcal{A}}^{-1}$, а миожество $\mathcal{N}(A+B)$ линейно и замкнуто, то $\overline{\mathcal{L}(\mathcal{R}(S_{\mathcal{A}}(B)))} \subseteq \mathcal{N}(A+B)$. Для доказательства обратного включения предноложим противное, т. е. что для любого $\varepsilon > 0$, $\varepsilon < C_{\mathcal{A}}^{-1}$, существует оператор $B_{\varepsilon} \subseteq L(X,X)$ такой, что $\|B_{\varepsilon}\| < \varepsilon$, $B_{\varepsilon}A \subseteq AB_{\varepsilon}$ п

$$\mathscr{L}_{\varepsilon} \stackrel{\mathsf{def}}{=} \frac{}{\mathscr{L}\left(\mathscr{K}\left(\mathcal{S}_{\mathscr{A}}\left(B_{\varepsilon}\right)\right)\right)} \stackrel{}{=} \mathscr{N}\left(A+B_{\varepsilon}\right).$$

Тогда найдется элемент $x_{\varepsilon} \in \mathcal{N}(A + B_{\varepsilon})$, удовлетворяющий условиям $||x_{\varepsilon}|| = 1$ и $\rho(x_{\varepsilon}, \mathcal{L}_{\varepsilon}) > 1/2$. Кроме того,

$$||x - S_{\mathcal{N}}(B)x|| \le C_A ||B|| (1 - C_A ||B||)^{-1} ||x|| \le C_A \varepsilon (1 - C_A \varepsilon)^{-1} ||x||.$$

так что при достаточно малом є будем иметь

$$||x - S_{\mathscr{N}}(B_{\varepsilon}) x|| < 1/6 \quad \text{V } x = K \stackrel{\text{def}}{=} \{x : x \in \mathscr{N}(A), ||x|| \leqslant 2\}.$$

Таким образом, $\rho(x_{\epsilon}, S_{\mathcal{N}}(B)x) > 1/2$ и

$$||x - S_{\varepsilon V}(B_{\varepsilon})x|| < 1/6 \quad \forall x \in K;$$

следовательно, $\rho(x_{\epsilon},x) > {}^{1}/{}_{3}$ $\forall x \in K$. Но, очевидно, $\rho(x_{\epsilon},\mathcal{N}(A)) = \rho(x_{\epsilon},K)$, откуда $\rho(x_{\epsilon},\mathcal{N}(A)) > {}^{1}/{}_{3}$, что протпворечит п. 1), поскольку ϵ произвольно мало.

3) Имеют место равенства

$$(A + B)^n x^{(n)} = S_{A}(B) x, \quad n = 1, 2, \dots,$$

где

$$x^{(n)} = \frac{1}{n!} \left(\frac{d^n}{dB^n} S_{A^+}(B) \right) x, \quad x \in \mathscr{N}(A), \quad \|B\| < C_A^{-1}.$$

Отсюда получаем $\mathcal{R}(S_{\mathscr{A}}(B)) \subseteq \mathfrak{M}(A-B)$; следовательно, $\overline{\mathcal{L}(\mathcal{R}(S_{\mathscr{A}}(B)))} \subseteq \overline{\mathfrak{M}(A+B)}$, т. е. $\mathcal{N}(A+B) \subseteq \overline{\mathfrak{M}(A+B)}$.

Теорема 2. Пусть выполнены предпосылки теоремы 1 и, кроме того, в L(X,X) существует оператор проектирования Q_Λ пространства X на $\mathcal{R}(A)$.

Tогда nри достаточно малых B:

- 1) сужение V оператора Q_A на $\mathcal{R}(A+B)$ устанавливает взаимно однозначное соответствие между $\mathcal{R}(A+B)$ и $\mathcal{R}(A)$;
- 2) $\Re(A+B)$ замкнуто в X; следовательно, отображение V взаимно пепрерывно;
- 3) в L(X,X) существует оператор проектирования Q_{A+B} пространства X на $\mathcal{R}(A+B)$, причем $\mathcal{R}(I-Q_A)=\mathcal{R}(I-Q_{A+B})$ (последнее означает, что $\mathcal{R}(A)$ и $\mathcal{R}(A+B)$ имеют общее дополнительное в X подпространство);
 - 4) $\mathcal{N}(A+B) \subseteq \mathfrak{M}(A+B)$;
 - 5) раствор подпространств $\mathcal{R}(A)$ и $\mathcal{R}(A+B)$ сколь угодно мал;
 - 6) $\mathfrak{M}(A) = \mathfrak{M}(A+B)$;
 - 7) $\overline{\mathfrak{R}(A)} = \overline{\mathfrak{R}(A+B)}$.

Доказательство. 1) Уравнение $Q_A(A+B)x=Ay$ или равносильное ему уравнение $Ax+Q_ABx=Ay$ имеет при любом $y\in \mathcal{D}(A)$ решение x=U(B)y. Отсюда ясно, что $V(\mathcal{R}(A+B))=\mathcal{R}(A)$. Для доказательства взаимной однозначности V требуется показать, что однородное уравнение $Ax+Q_ABx=0$ имеет решение только в $\mathcal{N}(A+B)$, т. е. что $\mathcal{N}(A+B)=\mathcal{N}(A+Q_AB)$. Воспользуемся для этого пунктом 2) теоремы 1, согласно которому $\mathcal{N}(A+B)=\overline{\mathcal{L}(\mathcal{R}(U_{\mathcal{N}}(B)))}$ и $\mathcal{N}(A+Q_AB)=\overline{\mathcal{L}(\mathcal{R}(U_{\mathcal{N}}(B)))}$. Так как, очевидно, $T_{\mathcal{N}^0}(B)=U_{\mathcal{N}}(B)$, то $\mathcal{N}(A+B)=\mathcal{N}(A+Q_AB)$.

2) Согласно пункту 1) доказываемой теоремы, $\mathcal{R}(V) = \mathcal{R}(A)$ п $\mathcal{N}(V) = \{0\}$. Поэтому, если показать, что V, рассматриваемое как оператор, действующий в X, является относительно открытым отображением, то из теоремы 1в (16) будет следовать замкнутость V, а значит, и замкнутость $\mathcal{R}(A+B)$, пбо V— непрерывный оператор. Относительная открытость V вытекает из следующих соображений. Прообраз по V произвольного элемента $Ay \in \mathcal{R}(V)$ имеет вид $(A+B)U(B)y = Ay - Q_ABU(B)y + BU(B)y$, откуда $\|(A+B)U(B)y\| \le \|Ay\| + \varepsilon \|y\|$, где $\varepsilon \to 0$ при $B \to 0$. Можно считать, что y удовлетворяет соотношению Ay = y; тогда $\|y\| \le C_A \|Ay\|$ и $\|(A+B)U(B)y\| \le (1+\varepsilon C_A)\|Ay\|$, т. е. $\|V^{-1}(Ay)\| \le (1+\varepsilon C_A)\|Ay\|$, что и означает относительную открытость V.

3) Требуемый оператор проектирования определяется формулой

 $Q_{A=B}=\tilde{V}^{-1}Q_{A}.$

4) Из пункта 3) теоремы 1 и пункта 2) доказываемой теоремы следует замкнуть $\mathfrak{M}(A+B)$. Отсюда, спова пользуясь пунктом 3) теоремы 1, по-

лучаем требуемое включение.

- 5) Пусть $z \in \mathcal{R}(A+B)$ и $\|z\|=1$; тогда $Q_Az=Ay$, где y взят так, что $\hat{A}Ay=y$. Полагая x=U(B)y, будем иметь (A+B)x=z, откуда $\|z-Ay\|<\varepsilon\|y\|$, где $\varepsilon\to 0$ при $B\to 0$. Но $\|y\|\leqslant C_A\|Ay\|=C_A\|Q_Az\|\leqslant \varepsilon C_A\|Q_A\|$; следовательно, $\|z-Ay\|<\varepsilon C_A\|Q_A\|$. Этим показана близость $\mathcal{R}(A+B)$ к $\mathcal{R}(A)$. Обратно, возьмем в $\mathcal{R}(A)$ произвольный единичный элемент Ax, где x удовлетворяет соотношению $\hat{A}Ax=x$. Тогда $\|(Ax+Bx)-Ax\|=\|Bx\|\leqslant \|B\|\|x\|\leqslant \|B\|C_A$, т. е. $\mathcal{R}(A)$ близко к $\mathcal{R}(A+B)$ (заметим, что последнее установлено с использованием только замкнутости A и $\mathcal{R}(A)$).
- 6), 7). Включения $\mathfrak{M}(A) \subseteq \mathfrak{M}(A+B)$ и $\overline{\mathfrak{M}(A)} \subseteq \overline{\mathfrak{M}(A+B)}$ имеют место без предположения о существовании оператора Q_A . Доказательство обратных включений основывается на том, что число C_H , отвечающее оператору H = A + B, можно взять в виде $C_H = C_A \|Q_A\| (1+\varepsilon)$, где $\varepsilon \to 0$ при $B \to 0$.

Рассмотрим какую-либо банахову алгебру \mathfrak{B} операторов $B \in L(X, X)$, коммутирующих друг с другом и с некоторым фиксированным липейным замкнутым оператором A, действующим в банаховом пространстве X. Выделим в \mathfrak{B} множество \mathfrak{G} , состоящее из операторов B таких, что: 1) $\mathcal{R}(A+B)$ замкнуто в X; 2) $\mathcal{N}(A+B) \subseteq \mathfrak{M}(A+B)$; 3) в L(X,X) существует оператор проектирования Q_{A+B} пространства X на $\mathcal{R}(A+B)$ (ср. с множеством \mathfrak{P} в (\mathfrak{P})). В силу пунктов 2), 4) и 3) теоремы 2 множество \mathfrak{G} открыто в \mathfrak{P} . Пусть G — какая-либо его связная компонента. Основываясь на теоремах 1) и 2), можно доказать следующую теорему.

Теорема 3. 1) Если B_1 , B_2 — операторы из G, то существует линейное взаимно однозначное и взаимно непрерывное отображение $\mathcal{R}(A+B_1)$ на $\mathcal{R}(A+B_2)$; тем самым размерность (в любом смысле) пространств $\mathcal{R}(A+B)$ постоянна в G.

2) Размерности банаховых пространств $\mathcal{N}(A+B)$, $X/\mathcal{R}(A+B)$ и $\mathcal{R}(A+B)^{\perp}$ постоянны в G.

3) Пространства $\mathfrak{M}(A+B)$ и $\overline{\mathfrak{N}(A+B)}$ постоянны, когда B пробегает G. Остановимся в заключение на рассмотрении обоих множеств \mathfrak{P} и \mathfrak{G} в банаховой алгебре \mathfrak{B} . Пусть $G_P \subseteq \mathfrak{P}$ и $G_Q \subseteq \mathfrak{G}$ — связные компоненты этих множеств. Возникает вопрос: всегда ли G_P и G_Q совпадают, если их пересе-

чение не пусто? В случае, когда X — гильбертово пространство, этот вопрос снимается, ибо тогда $\mathfrak P$ и $\mathfrak G$ совпадают. В общем же банаховом пространстве X вопрос остается открытым, однако можно указать некоторые частные случаи положительного его решения. Пусть, например, G_P состоит из операторов с конечномерными пространствами нулей, а G_Q — из операторов с конечномерными дополнениями к области значений; тогда размерности этих конечномерных пространств постоянны — каждая в своей компоненте. Если $G_P \cap G_Q \neq \emptyset$, то указанные размерности конечны в объединении $G_P \cup G_Q$, которое поэтому содержится одновременно в $\mathfrak P$ и $\mathfrak G$ и, следовательно, образует одну компоненту. Другим случаем положительного решения вопроса, охватывающим предыдущий, является тот, когда для всех точек компонент G_P и G_Q рассматриваемые операторы проектирования можно выбрать так, чтобы их нормы были ограничены в совокупности.

Московский институт инженеров железнодорожного транспорта

Поступило 28 V 1972

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ М. А. Гольдман, С. Н. Крачковский, а) ДАН, 197, № 6 (1971); б) ДАН, 181, № 5 (1968).