УДК 541.141.515+543.422.274

ХИМИЯ

Я. М. КИМЕЛЬФЕЛЬД, А. Б. МОСТОВОЙ, Л. И. ФАЙНШТЕЙН

МОЛЕКУЛЯРНЫЕ КОМПЛЕКСЫ КАК ПРОМЕЖУТОЧНАЯ СТУПЕНЬ В РЕАКЦИИ БРОМИРОВАНИЯ ЦИКЛОГЕКСЕНА

(Представлено академиком Н. Н. Семеновым 11 Х 1972)

В работах $(^{4-3})$, посвященных изучению низкотемпературного галоидирования и гидрогалоидирования олефинов методами термографии и электронных спектров поглощения, показано, что при температурах $-150 \div -190^{\circ}$ С можно разделить стадии комплексообразования и реакции. Однако электронные спектры поглощения недостаточно избирательны и полосы исходных молекул и комплексов зачастую палагаются.

В связи с этим представляет систем интерес исследование олефин-галоген при низких температурах по и.-к. спектрам, которые четко реагируют даже небольшие межмолекулярные взаимодействия. Объектом настоящего исследования выбрана система циклогексен бром, так как по данным Сергеева (4) реакция между ними начинается при сравнительно высоких температурах (—120° при послойном намораживании компонентов) и более доступна эксперименту.

Согласно (4), реакция бромирования циклогексена, исследованная в растворах в интертемператур $+4 \div -80^{\circ}$ протекает через последовательное образование комплексов бром-пиклогексен состава 1:1 и 2:1. Там же высказано мнение, что в отсутствие растворителя и в неполярных растворителях механизм реакции галоидирования определяется межмолекулярным взаимодействием исходных молекул без превращения промежуточных молекулярных комплексов в карбонийкатионы.

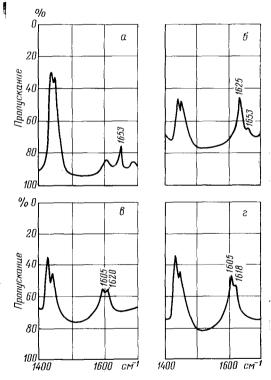


Рис. 1. И.-к. спектр циклогексена, напыленного на охлажденную до -185° С подложку (a) и спектр комплекса циклогексен — бром при напылении компонентов в соотношении 1:1 (б), 1:2 (в) и при соотношении 1:3 (г)

Взаимодействие циклогексена с бромом мы изучали при помощи спектрофотометра UR-20. Компоненты напылялись одновременно на подложку из КВг, охлаждаемую до —180 ÷ —185°. Подложка находилась в металлическом криостате с жидким азотом. Напыление производилось из двух вводов. Скорости напыления регулировались натекателями и подбирались

минимальными для предотвращения взаимодействия компонентов в газовой фазе. Давление наров, поступающих в криостат, составляло $10^{-2}-10^{-1}$ тор. Для получения достатечно плотных слоев напыление продолжалось 4—5 час. Проводилось также и последовательное многослойное напыление компонентов, но при этом не наблюдалось изменений в спектре циклогексена, вплоть до точки его плавления, когда начиналась реакция присоединения к нему брома.

При одновременном напылении рядом с полосой 1653 см⁻¹ чистого циклогексена возникала слабая полоса 1625 см⁻¹ уже при малом отношении брома к циклогексену. По мере увеличения этого отношения интен-

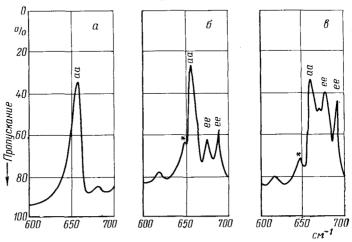


Рис. 2. Конформационные изменения в спектре транс-1,2-дибромциклогексана при нагревании подложки с образцом: a — при —170°; δ — —100°; ϵ — —70°; звездочкой отмечена полоса, относимая в работе (5) к aa-конформеру

сивность полосы 1625 см⁻¹ возрастала. При соотношении компонентов 1:1 полоса 1625 см⁻¹ была сильной, а 1653 см⁻¹ очень слабой (рис. 1). Неизменность частоты 1625 см⁻¹ свидетельствует об образовании индивидуального комплекса брома с циклогексеном. В случае же межмолекулярных взаимодействий других типов можно было ожидать, что возмущенная частота будет изменяться непрерывно с увеличением содержания брома в твердой смеси. Это, например, имеет место при концентрационном изменении величины давыдовского расщепления.

Таким образом, в комплексе бром — циклогексен состава 1:1 частота полосы $v_{C=C}$ понижается на 28 см $^{-1}$. Кроме того, при отношении 1:1 интепсивность полосы увеличивается примерно на порядок. Об этом можно судить, сравнивая интенсивность полос 1653 см⁻¹ чистого циклогексена п 1625 см⁻¹ комплекса с полосами деформационных колебаний СН₂-групп ~1440 см-1, которые не должны изменяться (рис. 1). При избытке брома (отношение бром: циклогексен 2:1 и 3:1) полосы 1653 см⁻¹ уже не видно, но наблюдаются две полосы 1605 и 1620 см-1 (рис. 1). Первую мы относим к валентному колебанию связи С=С комплекса бром — циклогексен состава 2:1, полагая, что соседство второй молекулы брома приводит к дальнейшему понижению частоты *. Эта полоса также много интенсивнее, чем у свободного кристаллического циклогексена (рис. 1). Более сильный сдвиг полосы, доходящий до ~3%, свидетельствует о возросшем возмуще-(6), B нии олефина. Как известно заведомо сильном

^{*} К предположению об участии комплекса бром — циклогексен состава 2:1 в реакции бромирования циклогексена пришли Сергеев и др. (5) при изучении кинетики изменения оптических плотностей в максимумах поглощения циклогексена и брома и в области 250—270 мµ.

 $Ag(C_6H_{10})BF_4$ сдвиг составляет 4,5%, и в случае последнего комплекса, так же как и в нашем случае, сдвиг полосы 1224 см $^{-1}$ деформационных колебаний олефиновых С—Н-связей не наблюдался. Отсутствие сдвига, по-видимому, связано с тем, что данные колебания молекулы циклогексена сильно смешаны по форме с деформационными колебаниями CH_2 -групп (7). В то же время в комплексах этилена с солями платины и

Таблица 1 ч И.-к. спектры продуктов низкотемпературного взаимодействия циклогексена с бромом * при — 185 °

Циклогенсен	Комплекс циклогексена с бромом		Транс-1,2-дибромциклогексан	
	в соотношении 1:1	в соотношении i:2	185°	—60°
453 ср.	453 ср.		457 сл.	457 сл. аа **
	200 of .		485 сл.	478 сл. аа
				495 сл. ее
645 c.	646 c.	666 c.	537 o. c.	536 o. c. aa
				653 сл. пл.
667 сл.	-		666 c.	663 c. aa
				681 cp. ee
722 c.	725 c.	738 cp.	Ì	695 cp. ee
8 1 3 c p.	813 сл.	813 cp.	813 ср.	813 c. aa
		-		842 сл. ее
880 с.	879 c.	878 c.	863 c.	865 c. aa
906 ср.	906 ср.		904 c.	904 c. ee, aa
9 1 9 c.	918 c.	918 c.		
972 о. сл.	978 о. сл.		975 сл.	975 cp. ee
1004 сл.			1003 c.	1003 c. aa
1015 о. сл.			1035 cp.	1035 cp. aa
1040 ср.	1039 ср.	1037 ср.		
1065 о. сл.				1075 сл. ее
1078 сл.	1078 о. сл.			10.0 00. 00
	2000		1125 сл.	1120 ср. аа
1139 c.	1140 с.	1143 ср.	1140 сл.	1140 сл. аа
		1	1180 c.	1178 c. aa
1224 о. сл.	1224 сл.	1221 сл.	1204 сл.	1200 cp. aa
1245 сл.	1245 сл.	1244 о. сл.		1
1245 cn. 1267 cp.	1245 сл.	1244 о. сл. 1268 сл.	1260 сл.	1258 сл. аа
1201 cp.	1209 сл.	1200 0.1.	1270 сл.	1230 сл. аа
1322 ср.	1321 сл.	1320 сл.	1270 0.1.	1281 сл. ее
1022 cp.	1021 6,1.	1020 0.1.	1320 сл.	1319 cp. aa
1340 сл.	1340 ср.	1342 сл.	1344 сл.	1340 cp. aa
1352 cp.	1353 сл.	1353 о. сл.	1360 cp.	1360 cp. aa
1392 ср.	1394 сл.	1400 о. сл.	1500 op.	1500 cp. aa
1332 cp. 1437 c.	1435 c.	1400 б. сл. 1432 с.	1433 c.	1430 c. aa
1448 c.	1447 c.	1432 c. 1445 c.	1445 c.	1445 c. aa
1110 0.	1441 0.	1445 C. 1605 C.	1.140 0.	1440 C. uu
1610 сл.	1625 с.	1620 <i>рр</i> пл.		
1653 c.	1652 сл.	1020 PP 11.11.		
1688 о. сл.	1002 0.1.		}	

^{*} Спектры, как правило, представляли собой наложение спектров различных продуктов, выбор полос определенного продукта проведен путем анализа спектров.
** Отнесение конформаций взято из работы (*).

серебра деформационные колебания этилена сильно сдвигаются в сторону низких частот. Наконец, помимо полосы валентного колебания связи C=C циклогексена в комплексах с бромом составов 1:1 и 2:1 несколько сдвигаются и другие полосы (табл. 1).

Полосу 1620 см⁻¹ мы относим к комплексу состава 1:1. Сдвиг этой полосы от 1625 см⁻¹ в случае избытка циклогексена или равного соотношения компонентов до 1620 см⁻¹ в случае избытка брома объясняется, по-видимому, тем, что в последнем случае на подложке криостата должны на-

ходиться комплексы составов 2:1 и 1:1 и свободный бром и полоса комплекса состава 1:1 в этой среде испытывает дополнительный сдвиг на 5 см⁻¹.

При нагревании подложки с одновременно напыленными компонентами до $-165 \div -160^\circ$ происходит реакция присоединения брома к циклогексену с образованием транс-1,2-дибромциклогексана (ДБЦГ) (4), причем начало реакции практически не зависит от того, в каком соотношении напылялись компоненты. Если напыление проводилось при избытке циклогексена и в спектре при температуре -180° проявлялись полосы свободного и комплексносвязанного циклогексена, то при нагревании, до -160° полосы второго исчезали, а первого оставались. Это служит указанием на то, что комплексообразование является промежуточной стадией в реакции бромирования циклогексена, причем реакция идет в твердой фазе и ее пачало, по-видимому, связано с фазовыми превращениями напыленного на подложку криостата кристалла.

И.-к. спектр ДБЦГ, полученного при пизкотемпературной реакции, в наших опытах совпадает со спектрами диаксиальной формы (аа-формы) этого соединения в замороженном состоянии (8) за следующим исключением: при температурах — $165 \div -150^{\circ}$ у нас отсутствует очень сильная полоса 651 см⁻¹, наблюдавшаяся в (8) при температуре —70°. Однако с повышением температуры она появлялась в виде плеча полосы 663 см⁻¹, а при дальнейшем нагревании возникали полосы 681, 695 см-4 и т. д. (рис. 2, табл. 1), которые относят к диэкваториальной форме (ее-форма). Поскольку при низких температурах полосу 651 см⁻¹ мы не наблюдали, а в спектре жидкости она присутствует (8), можно предположить, что она отпосится либо к ее-конформации, либо к метастабильной форме ДБЦГ. Отметим, что в спектре твердого образца под высоким давлением (8) имеется только одна полоса в области 650-660 см-1. Таким образом, полученные и.-к. спектры подтверждают предположение, что промежуточной стадией в низкотемпературной реакции бромирования циклогексена являются молекулярные комплексы брома с циклогексеном состава 1:1 и 2:1.

Институт спектроскопии Академии наук СССР Академгородок Моск. обл. Подольск. р-н Поступило 3 X 1972

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ А. И. Прокофьев, Г. Б. Сергеев, Вестн. Московск. унив., сер. хим., № 4, 24 (1966). ² В. А. Лишневский, Г. Б. Сергеев, Кинетика и катализ, 5, 407 (1964). ³ В. А. Лишневский, И. А. Орешкин и др., ДАН, 172, 863 (1967). ⁴ Г. Б. Сергеев, Современные проблемы физической химии, 4, 20 (1970). ⁵ Г. Б. Сергеев, В. В. Смирнов и др., ДАН, 203, 394 (1972). ⁶ D. В. Роwell, J. G. V. Scott, N. Sheppard, Spectrochim. acta, 28, 327 (1972). ⁷ N. Neto, C. Di Lauro et al., Spectrochim. acta, 23A, 1763 (1967). ⁸ P. Klaboc, Acta chem. scand., 25, 695 (1974).