УДК 538.566.5

МАТЕМАТИЧЕСКАЯ ФИЗИКА

П. Е. КРАСНУШКИН

О СВОЙСТВАХ НОРМАЛЬНЫХ ВОЛН В ПЕРИОДИЧЕСКИХ ВОЛНОВОДАХ ВБЛИЗИ КРАТНОСТИ ВОЛНОВЫХ ЧИСЕЛ

(Представлено академиком И. М. Виноградовым 1 VIII 1972)

1. Разобьем периодический волновод сечениями $S_j(z_j = z_0 + jD)$, нормальными к оси z, на идентичные ячейки $j = 0, \pm 1, \pm 2, \ldots, \pm R$. Для стационарного волнового процесса частоты ω (exp $(-i\omega t)$), согласно (1), уравнение для комплексных амплитуд тангенциальных компонент электромагнитного поля $E_{\tau}(q,j)$ и $H_{\tau}(q,j)$, $q \in S_j$, будет

$$\mathcal{A}Z(q, j) - Z(q, j+1) = Z^{0}(q, j),$$
 (1)

где Z— вектор-функция с компонентами E_{τ} и iH_{τ} , Z^{0} — заданная вектор-функция внешнего воздействия, \mathscr{A} — линейный оператор, преобразующий Z(q) на входном сечении ячейки в Z(q) на выходном сечении ячейки для $Z \in \mathscr{L}_{2}$. Область определения $D(\mathscr{A})$ плотна в \mathscr{L}_{2} .

Средний за период поток мощности P в сечении ячейки S определяется через скалярное произведение

$$P = \frac{ci}{16\pi} (\Im Z, Z),$$
 где $\Im = \begin{bmatrix} 0 & -\mathscr{C} \\ \mathscr{C} & 0 \end{bmatrix}$, (2)

 \mathscr{E} — оператор тождественного преобразования, c — скорость света.

Задача состоит в отыскании Z(q,j), являющегося единственным решением (1) при краевых условиях $E_{\tau}(q,\pm R)=\beta_{\pm}H_{\tau}(q,\pm R)$ и при заданной функции $Z^0(q,j)$; β_{\pm} — линейные импедансные операторы, введенные в (¹). Подчиним их условиям: 1) P>0 для β_{+} и P<0 для β_{-} при любых $H_{\tau}(q) \in \mathcal{L}_2$; 2) существует оператор, обратный $\Delta=\beta_{+}(j)-\beta_{-}(j)$, где $\beta_{\pm}(j)$ — операторы импедансов, пересчитанные с копцов цепочки $j=\pm R$ в любую ячейку номера j (см. п. 3 в (¹)); 3) выполнены условия (3) (см. ниже).

Пусть \mathscr{A}' — часть оператора \mathscr{A} с инвариантным подпространством \mathscr{L}^N , в котором существует базис, составленный из собственных функций F_l ($E_\tau^l(q), H_\tau^l(q)$), $l=1, 2, 3, \ldots, N$, оператора ячейки \mathscr{A} . Для этих функций имеет место условие биортонормированности (F_l , G_l) = $N_l\delta_{lm}$, где G_m — собственные функции оператора \mathscr{A}^* , сопряженного \mathscr{A} , δ_{lm} — символ Кропекера, N_l — нормирующий множитель.

Разделим миожество собственных значений оператора $\mathcal A$ на $\{\lambda_{l+}\}$ и $\{\lambda_{l-}\}$, для которых $P_l>0$ и $P_l<0$, где $P_l=i(\mathfrak F_l,F_l)$ (разделение для $P_l=0$ дано ниже). Условие 3) состоит в выполнении равенств

$$E_{\tau}^{l+} = 3 H_{\tau}^{l+}$$
 для всех $l+$, $E_{\tau}^{l-} = 3 H_{\tau}^{l-}$ для всех $l-$. (3)

При указанных краевых условиях решением (1) для $Z^{\scriptscriptstyle 0}=Z^{\scriptscriptstyle 0}(q)\delta_{\scriptscriptstyle jj'}$, $Z^{\scriptscriptstyle 0}\in \mathscr{L}^{\scriptscriptstyle N}$, будет

$$\begin{split} Z(q,j) &= \sum_{l+} Z_{l+}^{9} F_{l+}(q) \, \lambda_{l+}^{(j-j')}, \quad j > j'; \\ Z(q,j) &= \sum_{l-} Z_{l-}^{9} F_{l-}(q) \, \lambda_{l-}^{(j-j')}, \quad j < j', \end{split} \tag{4}$$

где $Z^0_{l+}=(Z_+^{\ 0},\ G_{l+})\ /N_{l+},\ Z^0_{\ l-}=(Z_-^{\ 0},\ G_{l-})\ /N_{l-};\ Z_+^{\ 0}$ и $Z_-^{\ 0}-$ компонен-

ты Z^0 , разделяемые по методу п. 3 (1).

Каждый член суммы (4) — это нормальная волна, характеризуемая формой $F_l(q)$, волновым множителем λ_l , коэффициентом возбуждения $(Z_l^0)^{\prime l}$ и типом (+ и -). $|\lambda_l|$ определяет отношение амплитуд, а arg λ_l — разность фаз смежных ячеек в волне помера l. При $|R| \rightarrow \infty$ (4) является разложением по пормальным волнам в бесконечном волноводе.

2. Пусть \mathscr{A}' зависит от комплексных параметров w_1, w_2, \ldots, w_n , являющихся координатами точки w эвклидова пространства C^n , и в области $\mathfrak{G} \subset C^n$ зависимости $\lambda_l(w_1, w_2, \ldots, w_n)$, $l=1, 2, 3, \ldots, N$, будут ветвями N-значной аналитической функции $\lambda(w) \colon \mathscr{L}^N$ инвариантно в \mathfrak{G} . Согласно (2), будем изучать $\lambda(w)$ с помощью путей $\mathscr{L}(s, \mu)$ в \mathfrak{G} , покрывающих гомотопно некоторую поверхность S (s — параметр пути, определяющий точку w на нем, а μ — индекс пути, выделяющий данный путь из семейства). Каждому пути на плоскости λ функция $\lambda(w)$ сопоставляет N ветвей $\lambda_l[\mathscr{L}]$. Их структура определяется окрестностями $\mathscr{U}(w^p)$ точек кратности w^p собственных значений λ_l , где ветви $\lambda_l[\mathscr{L}]$ пересекаются (p — порядок кратности). На путях, проходящих в $\mathscr{U}(w^p)$, происходит трансформация форм волн. При небольших изменениях μ вблизи $\mu_{\kappa p}$, при котором путь проходит через w^p , конфигурация ветвей и тип трансформации резко изменяются, что исключает классификацию волн по непрерывности s. Изучение $\lambda(w)$ в $\mathscr{U}(w^p)$ следует проводить в C^p .

3. Для изучения $\lambda(w)$ в $\mathcal{U}(w^2)$ выделим \mathcal{A}' с \mathcal{L}^2 и, введя в \mathcal{L}^2 базис $\{e_1(q), e_2(q)\}$, представим \mathcal{A}' (2×2)-матрицей $[a_{ik}(w_1, w_2)]$; i, k = 1, 2. Волновые множители интересующих пас пормальных волн будут

$$2\lambda_{1,2} = (a_{11} + a_{22}) \pm \sqrt{(a_{11} - a_{22})^2 + 4a_{12}a_{21}},\tag{5}$$

а формы волн определяются собственными векторами $F_{1,2}$ матрицы \mathscr{A}' . В качестве w_1 и w_2 возьмем $\delta=a_{11}-a_{22}$ и $l=2\sqrt{a_{12}a_{21}}$, считая $a_{11}+a_{22}=2\lambda_0=\mathrm{const.}$ В точке $w_{\pi}^{\ 2}(\delta=0,\,l=0)$ \mathscr{A}' может быть диагонализирована, при этом $e_1=F_1(q)$, а $e_2=F_2(q)$. $w_{\pi}^{\ 2}$ в C^2 не изолирована: на прямых $\delta=\pm il$, пересекающихся в $w_{\pi}^{\ 2}$, лежат точки $w_{\ \beta}$ в которых \overline{F}_1 и \overline{F}_2 сливаются и \mathscr{A}' можно придать жорданову форму. Введем два экземпляра C^2 : $C_1^{\ 2}$ и $C_2^{\ 2}$, соединив их поверхностью разреза S_c , проходящей через $\delta=il$ и $\delta=-il$. На путях \mathscr{L} , пересекающих S_c , происходит преобразование форм волн (см. $(^2)$).

Рассмотрим несколько характерных семейств $\mathscr{L}(s,\mu)$ в $\mathscr{U}(w_{\scriptscriptstyle \mu}{}^{\scriptscriptstyle 2})$:

Случай 1. $S_{\mathscr{L}}$ пересекает одну из прямых $\delta = \pm il$, т. е. точку $w_{\mathscr{J}}^2$. Рассматривая $S_{\mathscr{L}}$ как C^1 с параметрами w' = s и $w'' = \mu$, представим (5) в виде

$$\lambda_{1,2} = \lambda_0 + cw \pm \text{const } \sqrt{w}, \quad w = w' + iw''.$$

Ветви $\lambda_{1,2}[\mathscr{L}]$ имеют вид гипербол (см. рис. 1a (²)), разделенных сепаратриссами S_1 и S_2 при $w'' = \mu_{\mathrm{KP}} = 0$. При $w \to w_{\mathscr{J}}^2 N_1$ и N_2 стремятся к 0, а коэффициенты возбуждения $-\kappa \infty$. Сумма этих волн в $\mathscr{U}(w_{\mathscr{J}}^2)$ дает пространственные биения с амплитудой $\sin[\Delta\lambda(j-j')]/\Delta\lambda$, $\Delta\lambda=\lambda_1-\lambda_2$. При $w\to w_{\mathscr{J}}^2$, когда $\Delta\lambda\to 0$, возникает суммарная волна с линейно растущей амплитудой вдоль оси z. Ее можно получить непосредственно из (1) для $w=w_{\mathscr{J}}^2$, если вместо пропавшей собственной функции F_2 ввести присоединенную F_{12} . Тогда, согласно $\binom{2}{3}$,

$$\frac{(Z_{1}^{0}, G_{11})}{(F_{11}, G_{11})} F_{11}(q) \lambda_{0}^{(j-j')} + \frac{(Z_{2}^{0}, G_{12})}{(F_{12}, G_{12})} [F_{12}(q) + (j-j') F_{11}(q)] \lambda_{0}^{(j-j')}, \qquad (6)$$

где $F_{11}=F_1$ и F_{12} удовлетворяют уравнениям $\mathscr{A}'F_{12}-\lambda_0F_{12}=F_{11}$ и $\mathscr{A}'F_{11}-\lambda_0F_{11}=0$; G_{11} и G_{12} — собственная и присоединенная функция \mathscr{A}^* , Z_1^0 и Z_2^0 — компоненты Z^0 , разделенные по методу п. 3 (1). Первый член в

(6) — это нормальная, а второй — присоединенная волна. Обе волны могут быть возбуждены независимо друг от друга. Присоединенная волна характеризуется линейным парастанием амплитуды. Она возникает лишь для точек w^2 , в которых сходятся λ_1 и λ_2 одного типа (+ или —). При переходе через $\mu=0$ ветви резко изменяют конфигурацию и происходит смена трансформации волн.

Случай 2. S проходит через обе прямые $\delta=\pm il$ и $\mu=\lfloor l\rfloor$. Тогда для любого μ , кроме $\mu=0$, ветви $\lambda_l[\mathscr{L}]$ проходят последовательно через точки $\lambda(w_{\beta 1}^2)$ и $\lambda(w_{\beta 2})$, являясь усами соответствующих сепаратрисс S_2 и S_2 случая 1. Преобразование волн в w_2 компенсируется обратным пре-

образованием в $w_{\mathscr{F}_{\mathbf{2}}}^{q}$

Случай 3. $S_{\mathscr{L}}$ проходит через w_{π}^2 и пересекает S_c по некоторой линии, не совпадающей с $\delta = \pm il$ (см. рис. 1в работы (2)). На ветвях $\lambda_l[\mathscr{L}(s, \mu) = \lfloor l \rfloor]$ при $\mu = 0$ преобразования пет. Оно возникает скачком при $\mu \neq 0$. При всех значениях s и μ существует две пормальных волны (рис. $1e^{-2}$).

4. В консервативном волноводе, по определению, $P(S_{\text{вх}}) = P(S_{\text{вых}})$ и $(\Im Z, Z) = (\Im \mathcal{A}Z, \mathcal{A}Z),$ (7)

т. е. оператор 🖋 будет 3-изометрическим. Для него характерны

Свойство 1. Нормальные волны с $|\lambda_l| \neq 1$ не несут энергии (P=0). Комплексные волны $(|\lambda_l| \neq 1, \arg \lambda_l \neq 0, \pi)$ имеют конечные безваттные потоки.

Свойство 2. Волны с $|\lambda_l| \neq 1$ образуют сопряженные пары номеров l+ и l-, для которых $\lambda_{l+}\bar{\lambda}_{l-}=1$, $F_{l+}=\Im G_{l-}$ и $F_{l-}=\Im G_{l+}$, $N_{l+}=-\bar{N}_{l-}$, где G_{l+} и G_{l-} — собственные функции оператора \mathscr{A}^* , знак + отнесен к $|\lambda_l| \leq 1$, а знак - к $|\lambda_l| \geq 1$.

Из свойств 1 и 2 следует, что в точке w^2 , образованной λ_{l+} и λ_{l-} , сходящимися на линии $|\lambda|=1,\ F_l=\Im G_l$. Поэтому для них $P_l=N_l$. Так как в точке w и только в ней $P_l=0$, то имеет место

Свойство 3. Необходимым и достаточным признаком жордановости точки w^2 на линии $|\lambda|=1$ является условие $P_l=0$.

Если в качестве параметра w взять частоту ω , положив $\mathcal{A}'=\mathcal{A}_{\scriptscriptstyle 0}'+\omega B',$ то, учитывая, что на путях $\mathcal{L}(\omega',\,\omega''=0)$ условие (7) не нарушается, получим

Свойство 4. Ветви $\lambda_l[\mathscr{L}(\omega',\,\omega''=0)]$, сходящиеся к точке w^2 вдоль линии $|\lambda|=1$ при $\omega'=\omega'_{\mathcal{J}}$, характеризуются условием $\frac{d}{d\omega}$ [arg λ_l] $\to\infty$.

При переходе через значение $\omega' = \omega'_{\mathcal{I}}$ происходит преобразование незатухающих воли в затухающие и ветви λ_l сходят с окружности $|\lambda| = 1$ под прямым углом. ω разделяют полосы пропускания и запрета. Присоединенные волны в точках $(w^2_{\mathcal{I}})$, лежащих на линии $|\lambda| = 1$, не возникают.

Если ячейки подчинить принципу взаимности, потребовав выполнения условия $\mathcal{A}_{22}\overline{\mathcal{A}}_{11} - \mathcal{A}_{21}\mathcal{A}_{12} = \mathcal{E}, \ \mathcal{A}_{11} = \mathcal{A}_{12}^{-1}\mathcal{A}_{11}\mathcal{A}_{12}$ для блоков \mathcal{A} , то получим

Свойство 5. В волноводах с «взаимными» ячейками существуют пары нормальных волн, сопряженных условием $\lambda_{l+}\lambda_{l-}=1$ (см. (¹)).

5. Расчетные примеры. 1) В (4), где матрица \mathscr{A}' строится методом частичных областей, рассчитаны ветви $\lambda_l[\mathscr{L}(\omega',a)]$ для диафрагмированного консервативного волновода (a- радиус отверстия в диафрагме) в $\mathscr{U}[w_\pi^2(\omega_\pi',a=0)]; \lambda(w_\pi^2)$ лежат на линиях $|\lambda|=1$ и $\mathrm{Im}\,\lambda=0$. В $\mathscr{U}(w_\pi^2)$ происходит изменение числа узлов по радиусу и длине ячейки и, согласно рис. 3 из (4), возникает обмен форм между двумя нормальными волнами. Ситуация аналогична случаю 3 из п. 3, если сопоставить ω' с δ , а a-c|l|. Кривые рис. 3 из (4) проведены через расчетные точки неверно: они должны иметь дисперсию одного типа.

2) В (5-7) периодический волновод аппроксимируется системой обыкновенных дифференциальных уравнений с периодическими коэффициентами, исследованной еще Флоке, Ляпуновым и Пуанкаре, а затем в работах (8, 9). При таком подходе матрица ячейки представляется матрицей монодромии и λ_l являются мультипликаторами уравнения Флоке. В (7) рассчитаны ветви $\lambda_l[\mathcal{L}(\omega', \varkappa)]$ для волновода с гофрированной поверхностью (\varkappa — глубина гофра) в $\mathcal{U}(w_{\mu}^2)$, $\lambda(w_{\mu}^2)$ лежит на $|\lambda|=1$ в точке ($\omega_{\pi}', \varkappa_{\pi}$). При $\varkappa \neq \varkappa_{\pi}$ она расщепляется на две точки типа w_{π}^2 Для рассмотренных путей имеет место ситуация, аналогичная случаю 2 из п. 3, т. е. проходятся последовательно обе жордановы точки. При этом две нормальных волны из полосы пропускания попадают в полосу запрета, а затем возвращаются в полосу пропускания (рис. 2, 3 из (7)).

Примечание при корректуре. Расчетные примеры 1) и 2) являются

иллюстрацией следующего свойства.

Свойство 6. Если w_{π}^2 , $\omega = \omega_{\pi}$, $\eta = \eta_{\pi}$, лежит на окружности $|\lambda| = 1$, то в консервативных волноводах возможны только два случая ее расщепления на две жордановы точки при $\eta \neq \eta_{\pi}$:

1) они сходят с окружности внутрь и наружу круга, и между волнами одного типа (+ или —) возникает обмен формами, связанный с изменением числа узлов:

2) они остаются на окружности, и для волн разных типов в полосе пропускания возникает полоса запрета.

Нестабильность случая 1) в работах (8, 9) не рассматривалась.

Математический институт им. В. А. Стеклова Академии наук СССР Москва Поступил**о** 1 VIII 1972

ШИТИРОВАННАЯ ЛИТЕРАТУРА

¹ П. Е. Краспушкин, Радиотехн. и электроника, 10, 7, 1214 (1965). ² П. Е. Краснушкин, Е. Н. Федоров, Радиотехн. и электроника, 17, 6, 1129 (1972). ³ И. И. Голичев, П. Е. Краснушкин, Теоретич. и матем. физ., 10, 3, 370 (1972). ⁴ П. Е. Краснушкин, С. П. Ломпев, Радиотехн. и электроника, 11, 6, 1051 (1966). ⁵ Р. Е. Кгаѕпиѕһкіп, Ј. Phys. USSR, 10, № 5, 434 (1946). ⁶ В. И. Короза, Радиотехн. и электроника, 15, 3, 450 (1970). ⁷ В. И. Короза, А. Г. Трагов, Ю. П. Шанкин, Радиотехн. и электроника, 16, 40, 1788 (1971). ⁸ М. Г. Крейн, Сборник. Памяти А. А. Андронова, Изд. АН СССР, 1955, 413. ⁹ И. М. Гельфанд, В. Б. Лидский, УМН, 10, 1, 3 (1955).