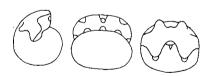
УДК 564.53

ПАЛЕОНТОЛОГИЯ


В. В. ДРУЩИЦ, И. А. МИХАЙЛОВА

О СИСТЕМАТИЧЕСКОМ ПОЛОЖЕНИИ ТЕТРАГОНИТИД (LYTOCERATIDA, AMMONOIDEA)

(Представлено академиком В. В. Меннером 27 II 1972)

Систематика меловых аммонитов до последних лет основывалась препмущественно на изучении внешних морфологических признаков и посила в значительной степени искусственный характер. Только в последние два десятилетия появились работы $\binom{4-7}{3}$, в которых систематика и филогения меловых аммонитов рассматривалась на основании онтогенетических исследований. Однако изучение ранних стадий морфогенеза представителей тетрагонитид, относимых к отряду литоцератид, проведенное авторами статьи и палеонтологами из $\Phi P\Gamma$ (5-7), привело к разным результатам. И. Видман (6) на основании способа образования сутуральной лопасти предложил рассматривать тетрагонитил в ранге надсемейства, а несколько позднее О. Шиндевольф (5), учитывая строение сутуральной лопасти, а также предполагаемое наличие в примасутуре (второй лопастной линии) 6, а не 5, как обычно, лонастей, возвысил их до ранга подотряда Tetragonitina. С подобной трактовкой трудно согласиться. Изучение оптогенеза четырех видов рода Tetragonites Kossmat (T. heterosulcatus Anth., T. duvalianus d'Orb., T. depressus Rasp. и Т. timotheanus Pict.) из гаргаза; клансея и среднего альба Северного Кавказа: показало, что морфогенез у всех четырех видов протекал сходно. У всех видов протоконх имеет боченковидную форму, длиной до 0,95 мм, при диаметре до 0,6 мм (рис. 1). Начало первого оборота отличается очень низкой полулунной формой поперечного сечения (рис. 2a), в середине первого оборота происходит резкое изменение формы поперечного сечения (рис. 26, κ) — ширина оборота уменьшается и значительно увеличивается его высота. Возможно, подобное изменение формы сечения спирали было связано с изменением формы тела

Рис. 1. Протоконх Tetragonites depressus Rasp., с просутурой и примасутурой (25×). Экз. № 6708-7. Северный Кавказ, р. Урух, апт, гаргаз, зона Epicheloniceras subnodosocostatum

аммонителлы (8). При дальнейшем росте тела аммонита высота и ширина оборота постепенно увеличивались и несколько возрастала инволютность раковины (рис. 2s-u). В процессе морфогенеза несколько изменялась гофрировка перегородки. Если в начале (рис. 2b) первого оборота вентральная (V) и дорзальная (D) лопасти, а также умбиликальная (U), или латеральная (U), и внутренняя (I) соединялись соответствующими желобками, то начиная с I0 перегородки происходит перестройка связей п I соединяется с U; эта связь сохраняется па всех дальнейших стадиях развития. Просутура состоит из трех лопастей: U(=L), U1 и I (рис. I0, I3, I1, I2, I3, I3, I4, I4, I5, I5, I4, I5, I6, I7, I8, I8, I9, I9, I9, I1, I2, I3, I4, I4, I4, I5, I4, I5, I5, I5, I5, I6, I6, I7, I7, I1, I2, I3, I4, I4, I4, I4, I4, I4, I5, I4, I5, I4, I4, I5, I5, I5, I5, I5, I6, I6, I7, I8, I8, I9, I1, I1

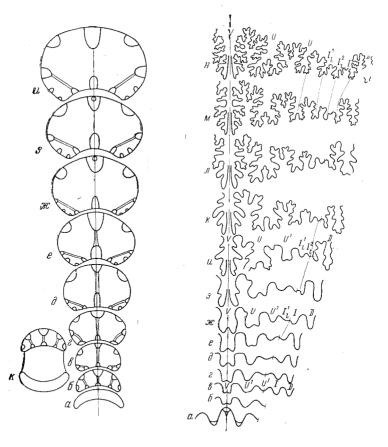


Рис. 2 Рис. 3

Рис. 2. Изменение поперечного сечения оборотов спирали в онтогенезе того же вида. a-2 перегородки (п.); $\delta-7$ п.; $\epsilon-10$ п., конец 1 оборота (об.); $\epsilon-19$ п., $4^{1}/_{2}$ об. ($a-\epsilon-20\times$); $\partial-26$ п. ($46\times$), начало 3 об.; $\epsilon-32$ п., $2^{1}/_{2}$ об. ($12\times$); $\varkappa-38$ п., начало 4 об. ($9\times$); s-44 п., $3^{2}/_{5}$ об. ($5\times$); u-57 п., $4^{1}/_{2}$ об. ($3\times$); $\kappa-$ соотношение 2 и 7 перегородок ($20\times$)

Рис. 3. Изменение лопастной линии в онтогенезе того же вида. a-e-1-3, 6 лопастные линии (л.л.); $\theta-10$ л.л., конец 1 об.; e-16 л.л., $4^1/2$ об.; m-20 л.л., начало 3 об. $(a-s-22\times)$; u-29 л.л., $2^1/2$ об. $(18\times)$; n-37 л.л., начало 4 об. $(10\times)$; n-42 л.л., $3^2/5$ об. $(7\times)$; m-50 л.л., $4^1/4$ об. $(4\times)$; n-58 л.л., $4^3/4$ об. $(3\times)$

ху очень коротким просифоном (рис. 4e, 3a). Примасутура состоит из 5, а не из 6 лопастей, как предполагал Шиндевольф (5). Подобно всем аммоноидеям, в ней возникает две новых лопасти V и D, что, по-видимому, связано с обособлением сифона (2). Дальнейшее усложнение перегородки начинается на вентральной стороне (рис. $3\theta - e$), но только в начале третьего оборота (рис. 3ω) на наружном склоне I возникает вторичное седло, увеличение которого приводит к возникновению новой, шестой, лопасти (I_t , причем предлагаемый новый символ I подчеркивает возникновение ее на склоне лопасти). В дальнейшем новые элементы лопастной линии возникают в области умбиликального шва, в результате деления вначале седла I_t /I (рис. 3u), затем седла I_t 2/I. Одновременно с появлением новых лопастей идст усложнение всех ранее возникших элементов лопастной линии. В дорзальной лопасти возникают боковые зубцы; в пачале четвертого оборота лопасть D приобретает двураздельность (рис. 3κ), и в это время у нее появляются септальные крылья — следы прикрипления дорзальной

части тела аммонита к предшествующей перегородке (²). С ростом раковины размеры септальных крыльев значительно увеличиваются.

Таким образом, на основании изучения морфогенеза аптских и альбских тетрагонитид установлено, что примасутура состоит из 5, а не из 6 лопастей; появление новых элементов связано с возникновением вторичного седла на склоне лопасти I, а затем повторного деления этого седла; септальные крылья возникают в начале 4 оборота; нет убедительных оснований для рассмотрения тетрагонитид в ранге подотряда.

Московский государственный университет пм. М. В. Ломоносова

Поступило 27 VI 1972

ПИТИРОВАННАЯ ЛИТЕРАТУРА

¹ В. В. Друщиц, Вестн. Московск. унив., геология, № 6 (1953). ² В. В. Друщиц, Нижнемеловые аммониты Крыма и Северного Кавказа, М., 1956. ³ И. А. Михайлова, Вестн. Московск. унив., сер. биол., почвовед., геол. и геогр., № 3 (1957). ⁴ И. А. Михайлова, Палеонт. жури., № 3 (1963). ⁵ О. Н. Schindewolf, Studien zur Stammesgeschichte der Ammoniten, Lief. I—VII, Wiesbaden, 1961—1968. ⁶ J. Wiedmann, Palaeontographica, 113, Abt. А (1962). ⁷ J. Wiedmann. Paläontol. Zs., 37 (1962). ⁸ В. В. Друщиц, Н. Хиами, Палеонтол. жури., № 1 (1970).