MATEMATHKA

ю. в. егоров, п. р. попиванов (болгария)

ОБ ОДНОМ КЛАССЕ ПСЕВДОДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ ГЛАВНОГО ТИПА, НЕ ИМЕЮЩИХ РЕШЕНИЙ

(Представлено академиком И.Г. Петровским 20 VI 1972)

1. В этой работе даются новые условия, необходимые для локальной разрешимости линейных дифференциальных и псевдодифференциальных

уравнений с бесконечно дифференцируемыми коэффициентами.

Мы рассматриваем уравнения вида P(x, D)u=f(x), где P(x, D)- псевдодифференциальный оператор (определение см. $\binom{1}{2}$) с гладким символом $p(x, \xi)$, а функция f(x) бесконечно дифференцируема. Рассматриваются решения u(x) из класса $D'(\Omega)$. Как и в работе $\binom{7}{2}$, здесь предполагается, что P— оператор главного типа (r.т.),

$$p^{0}(x, \xi) = 0, \quad \xi \neq 0 \Rightarrow \operatorname{grad} p^{0}(x, \xi) \neq 0,$$

где $p^0(x, \xi)$ — главная часть символа $p(x, \xi)$ оператора P, а grad = grad_{x, \xi}. Напомним следующее общензвестное

Определение. Оператор P(x, D) называется локально разрешимым в точке $x_0 \in \Omega$, если существует окрестность $\omega \subseteq \Omega$ точки x_0 , в которой для всякой функции $f \in C_0^{\infty}(\omega)$ существует распределение $u(x) \in E'(\Omega)$ такое, что P(x, D)u = f(x) в ω .

Различные условия, необходимые для локальной разрешимости таких уравнений, были даны в работах (³⁻⁹) (см. работы (¹⁰⁻¹²), где дается обзор результатов). Условия в этой заметке являются наиболее общими и содержат в себе все ранее полученные.

2. Пусть $\operatorname{Re} p^{0}(x, \xi) = a(x, \xi), \operatorname{Im} p^{0}(x, \xi) = b(x, \xi).$ Пусть (x^{0}, ξ^{0}) —

характеристическая точка, т. е. $p^{0}(x^{0}, \xi^{0}) = 0$.

В силу (г.т.) имеем тогда, что grad $p^0(x^0, \xi^0) \neq 0$. Для определенности будем считать, что grad $a(x^0, \xi^0) \neq 0$. Тогда кусок поверхности $a(x, \xi) = 0$ (коразмерности 1), содержащий точку (x^0, ξ^0) , расслаивается на бихарактеристики функций $a(x, \xi)$, т.е. кривые x = x(t), $\xi = \xi(t)$, удовлетворяющие дифференциальным уравнениям

$$\dot{x}(t) = \operatorname{grad}_{\xi} a(x(t), \, \xi(t)), \quad \dot{\xi}(t) = -\operatorname{grad}_{x} a(x(t), \, \xi(t)).$$

Такие бихарактеристики называются нулевыми. Пусть L — отрезок нулевой бихарактеристики, для которой $(x(t_0), \xi(t_0)) = (x^0, \xi^0)$. Часть отрезка кривой L, соответствующую значениям $t > t_0$ $(t < t_0)$, обозначим через L_+ (L_-) .

Мы будем предполагать, что выполнено следующее

Условие (А):

УДК 517.944

$$b(x, \xi) \leqslant 0$$
 на $L_-, b(x, \xi) \geqslant 0$ на $L_+.$

Существуют такие последовательности точек $(x^n, \, \xi^n) \in L_-, \, (\tilde{x}^n, \, \tilde{\xi}^n) \in L_+,$ сходящиеся κ $(x^0, \, \xi^n)$, что

$$b(x^n, \xi^n) < 0, \quad b(\widetilde{x}^n, \widetilde{\xi}^n) > 0.$$

Таким образом, мы предполагаем, что функция $b(x, \xi)$ не обращается тождественно в нуль ни на каком отрезке кривой L, содержащем точку (x^0, ξ^0) . Это условие представляется довольно естественным и, как показывают простые примеры, не может быть отброшено.

3. Сформулируем теперь основной результат нашей работы.

Теорема 1. Пусть P(x, D) — псевдодифференциальный оператор главного типа с гладкими коэффициентами. Пусть (x^0, ξ^0) — некоторая точка из $T^*(\Omega) \setminus 0$ такая, что $p^0(x^0, \xi^0) = 0$ и выполнено условие (A). Предположим, что либо $\partial_L b(x^0, \xi^0) \neq 0$, где ∂_L — оператор дифференцирования вдоль L, либо выполнено

yclobue (B):
$$\overline{\lim_{\substack{(x,\xi)\to(x^0,\xi^0)\\(x,\xi)\in L}}}|(\alpha(x,\xi),\operatorname{grad}b(x,\xi))|\cdot|b(x,\xi)|^{-1/2}<\infty,$$

если $(\alpha(x, \xi), \operatorname{grad} a(x, \xi)) = 0, \alpha(x, \xi) \in C.$

Тогда оператор P(x, D) не является локально разрешимым в точке x^0 . В случае, когда $\partial_L b(x^0, \xi^0) \neq 0$, теорема была доказана Л. Хёрмандером в работе (5). Укажем некоторые простые условия, достаточные для справедливости условия (B).

Tеорема 2. Пусть для оператора P(x, D) главного типа выполнено

условие (A) в характеристической точке (x^0, ξ^0) и $\partial_L b(x^0, \xi^0) = 0$.

Тогда каждое из следующих условий достаточно для справедливости исловия (В):

 (B_1) Функция $b(x, \xi)$ монотонна вдоль кривой L в некоторой окрестности точки (x^0, ξ^0) :

 (B_2) Функция $b(x, \xi)$ не равна 0 тождественно ни на каком отрезке нулевой бихарактеристики функции $a(x, \xi)$ в некоторой окрестности точки (x^0, ξ^0) ;

 (B_3) Функция $b(x, \xi)$ имеет вдоль L нуль конечного порядка в точке

 $(x^{0}, \xi^{0});$

 (B_4) В некоторой окрестности точки $(x^0, \, \xi^0)$ существует гладкое многообразие S, трансверсальное κ L и обладающее следующим свойством: в каждой точке поверхности S, лежащей на поверхности $a(x, \, \xi) = 0$, функция $b(x, \, \xi)$ меняет знак c минуса на плюс при движении e положительном направлении по нулевой бихарактеристике функции $a(x, \, \xi)$, проходящей через эту точку.

Заметим, что, как легко видеть, условие (B_1) вытекает из условия (B_3) . Достаточность условия (B_4) доказана в работе $(^6)$. Там же отмечено, что условие (B_1) можно заменить следующим, более слабым условием:

 (B_{1}') Существует постоянная C > 0 такая, что $|b(x, \xi)| \le C|b(y, \eta)|$, если (x, ξ) , $(y, \eta) \in L$ и точка (x, ξ) лежит ближе к (x^{0}, ξ^{0}) , чем точка (y, η) .

Достаточность условия (В2) для выполнения условия (В) доказана в

работе (13).

4. Условие (В) не является необходимым для справедливости теоремы 1. Например, существует такая функция $f(x_1, x_2) \in C^{\infty}$, что для символа $p^0(x, \xi) = i\xi_1 + f(x_1, x_2) |\xi|$ оператора P(x, D) не выполнено неравенство (В), но оператор P(x, D) не является локально разрешимым.

Эта функция $f(x_1, x_2)$ имеет следующий вид. Пусть $\varphi(x_1) \in C^{\infty}$, $\varphi(x_1) \geq 0$ и $\varphi(-x_1) = \varphi(x_1)$. Пусть функция $\varphi(x_1)$ имеет нули бесконечного порядка в точках $x_1 = 0$, $x_1 = \pm 1/n$, где $n = 1, 2, \ldots$, и положительна в остальных точках, а $\psi(x_1) = w(x_1) \varphi(x_1)$, где $w(x_1) = 2^{-n} \operatorname{sgn} x_1$. $\operatorname{max} \varphi(x_1)$, если $1/n \leq |x_1| \leq 1/(n+1)$. Полагаем теперь $f(x_1, x_2) = \psi(x_1) + x_2 \varphi(x_1)$.

Существует много примеров операторов, для которых условие (В) не выполнено в точке (x^0, ξ^0) , но выполняется в точках, сколь угодно близких к (x^0, ξ^0) . Например, в случае рассмотренного выше оператора P(x, D) условие (В) не выполняется при $x_1 = x_2 = 0$, но существует последовательность точек $x^n = (x_1^n, x_2^n) \to 0$ такая, что в x^n выполнено условие (В₄).

Эта ситуация имеет место также, например, для следующего класса операторов.

Теорема 3. Оператор P(x, D) главного типа не является локально

разрешимым, если выполнено следующее условие:

(C) Функция $b_0(t) = b(x(t), \xi(t))$, где x = x(t), $\xi = \xi(t)$ — уравнения кривой L, меняет знак в точке $t = t_0$, не обращается в нуль тождественно ни на каком отрезке, имеет бесконечное множество нулей, сгущающееся в t_0 , и нули функции $b_0(t)$ чередуются с нулями функции $b_1(t) = (\alpha(t), \gcd b(x(t), \xi(t)))$, где $\alpha(t)$ — некоторый вектор, нигде не равный нулю и такой, что $\alpha(t)$, $\alpha(t)$, $\alpha(t)$, $\alpha(t)$, $\alpha(t)$ = $\alpha(t)$ =

Можно было бы привести много примеров такого сорта, но мы не делаем этого из-за недостатка места. Укажем только, что таковыми являются операторы, для которых $b_1(t_0) \neq 0$, и операторы, укоторых функция $b_1(t)$

имеет при $t = t_0$ нуль конечного порядка.

6. Доказательство теоремы 1 проводится по схеме, предложенной в работах (5) и (7), в связи с чем используется новый вариант теоремы о локализации. Мы используем также результаты работы (14) и лемму о неявной функции из работы (15). Наконец, строится приближенное решение задачи Коши для дифференциального оператора с бесконечно дифференцируемыми коэффициентами аналогично тому, как это делается в работе (6).

Московский государственный университет им. М. В. Люмоносова

Поступило 16 VI 1972

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ J. J. Kohn, L. Nirenberg, Comm. Pure and Appl. Math., 18, № 1/2, 269 (1965). ² L. Hörmander, ibid., 18, № 3, 501 (1965). ³ Л. Хёрмандер. Линейные дифференциальные операторы с частными производными, М., 1965. ⁴ L. Nirenberg, F. Treves, Comm. Pure and Appl. Math., 16, № 3, 331 (1963). ⁵ L. Hörmander, Ann. Math., 83, № 1, 129 (1966). ⁶ L. Nirenberg, F. Treves, Comm. Pure and Appl. Math., 23, № 1, 1 (1970). ⁷ Ю. В. Егоров, Тр. Московск. матем. общ., 24, 29 (1971). ⁸ В. В. Грушин, Матем. заметки, 10, № 2, 125 (1971). ⁹ Е. Г. Бам-Зеленкович, ДАН, 204, № 2, 267 (1972). ¹⁰ Ю. В. Егоров, УМН, 26, № 2, 183 (1971). ¹¹ F. Treves, Proc. of Summer School on Berkley, 1971. ¹² L. Hörmander, Enseign. math., 17, № 2, 99 (1971). ¹³ F. Treves, Comm. Pure and Appl. Math., 24, № 1, 71 (1971). ¹⁴ Ю. В. Егоров, Тр. Московск. матем. общ., 24, 3 (1971). ¹⁵ Г. И. Эскин, Матем. сборн., 82, № 4, 585 (1970).