УЛК 539.26

ТЕХНИЧЕСКАЯ ФИЗИКА

А. В. КУРДЮМОВ, Н. Ф. ОСТРОВСКАЯ, А. Н. ПИЛЯНКЕВИЧ. академик АН УССР И. Н. ФРАНЦЕВИЧ

ИССЛЕДОВАНИЕ СУБСТРУКТУРЫ ВЮРЦИТОПОДОБНОЙ МОЛИФИКАНИИ НИТРИЛА БОРА

В работах (1-5) сообщалось о синтезе новой кристаллической модификании нитрила бора с вюрцитоподобной структурой (BN_B). Указывалось (1, 4, 5), что BN_в обладает малым размером кристаллитов и дает на рентгенограммах весьма размытые линии. Тонкая структура BN_в и природа значительного размытия линий на рентгенограммах не изучались. В настоящей работе методами рентгеновского анализа, электронной микросконии и микролифракции исследовалась структура В. полученного в условиях линамического сжатия.

Рентгеновские дифракционные спектры BN_в и этанода были получены на установке ДРОН- $\tilde{1}$ в Си K_{α} -излучении с использованием щелей Солдера. Эталоном служил образец сфалеритоподобной модификации нитрила

hkl

бора, рентгенограммы вращения которого содержали четкие линии с хорошим разрешением Профили K_{α} -дублета. В В и этанола регистрировались по точкам с интервалом 0.01° при времени счета импульсов 40 cer.

В табл. 1 приведены результаты измерения интегральной B_{\circ} ширины са,-компоненты наиболее интенсивных линий В В Поскольку профили линий

θ_{Cu} ' d. Å B_{\circ} 3/tg 0 6 cos 8 11,4

Таблина 1

2,207 2,120 1,957 1,529 $\begin{array}{c|c}
9,4 & 25,4 \\
10,2 & 26,1
\end{array}$ 100 20°27′ 21°19′ 23°12′ 12,1 19,5 18,3 002 101 Не определялось 30°1**7**′ 102 37°14′ 1,274 110 19,0 16,8 | 22,0 |л 13,4 40°23′ | 1,190 | 36,6 62°25′ | 0,8697 | 64,6 103 Не определялось 203 210 | 67°35′ | 0.8340 | 49.6 | 48,3 | 20,1 | 18,3

hk0 и 00l от BN_n , а также линий эталона описывались функцией i(x) = $=i_0(1+\gamma x^2)^{-2}$, промежуточной по форме между распределениями Гаусса п Коши, значения физического уширения в для этих линий вычислялись по метолике $\binom{6}{1}$.

Размер D областей когерентного рассеяния (о.к.р.) и относительная микродеформация решетки є определялись по интегральной ширине линий hk0 методом аппроксимации (6) и методом гармонического анализа их формы, развитым в работах (7 , 8). Было принято, что о.к.р. в направлениях $hk\bar{0}$ равноосны, а напряжения изотронны, т. е. линии 100, 110 и 210 рассматривались как различные порядки отражений от одной си-Подобное попущение использовалось при анализе стемы плоскостей. линий hk0 и от других гексагональных структур (9, 10).

Размер о.к.р. $D_{\rm s}$, вычисленный по интегральной ширине линий, оказался равным 330 Å, размер $D_{\rm r}$, вычисленный методом гармонического анализа, составил 150 Å. Значения ε и $\langle \varepsilon^2 \rangle'^{\frac{1}{2}}$, вычисленные первым и вторым методами, составили 0,005 и 0,003 соответственно.

Различие значений $D_{\mathtt{n}}$ и $D_{\mathtt{r}}$ является естественным, поскольку $D_{\mathtt{n}} =$ $=\langle D^2 \rangle / \langle D \rangle$, а $D_{\rm r} = \langle D \rangle$ [8]. Величина различия $D_{\rm H}$ и $D_{\rm r}$ зависит от функции распределения о.к.р. по размерам и должна быть тем больше, чем больше моменты второго и третьего порядков этой функции. Различие величин ϵ и $\langle \epsilon^2 \rangle^{\frac{1}{2}}$, характеризующих деформацию решетки, как и в случае

D. обусловлено функцией распределения величин є.

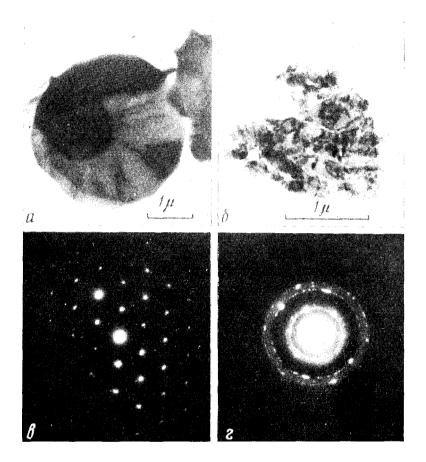
Величину $\hat{D}=150$ Å можно трактовать так же, как среднее расстояние между дислокациями (11), хаотически распределенными в теле зерна со значительным разбросом расстояний между соседними дислокациями. Зависимость уширения линий на рентгенограммах $BN_{\rm B}$ от угла отражения, промежуточная между $tg \theta$ и sec θ (табл. 1), подтверждает вывод о подобном распределении дислокаций в $BN_{\rm B}$ (12).

Линии hkl $(h-k\neq 0,\ l\neq 0)$ на рентгенограммах $BN_{\rm B}$ значительно шире остальных линий (табл. 1), что связано с наличием дефектов упаковки по плоскостям (001) (13). Следует также отметить высокий уровень фона на рептгенограммах $BN_{\rm B}$, что может быть обусловлено значительной долей рассеяния от границ между зернами с большими углами разориентировки и сильно разупорядоченной структурой. Наличие таких зерен

подтверждается данными электронно-оптического анализа.

На рис. 1 приведены электронные микрофотографии и соответствующие им электронограммы (80 кв, JEM-6A) частицы BN графитоподобной модификации BN_г и частицы BN_в, образовавшегося в результате фазового превращения BN_г. Частицы BN_в значительно отличаются по размерам и форме от частиц BN_г. Они имеют неправильную форму с сильно развитой поверхностью, хорошо выявляется их зеренная структура, тогда как частицы исходного BN_г являются в основном монозеренными с четко выраженной огранкой. По электронно-микроскопическим снимкам BN_в были найдены распределения частиц и составляющих их зерен по размерам в плоскости изображения. Кривые распределения подчиняются логарифмически-нормальному закону, наиболее вероятный размер зерен равен 260 Å, частиц — 2400 Å. Средние размеры зерен и частиц составили 500 и 3500 Å соответственно.

Анализ микроэлектронограмм $BN_{\rm B}$ показал, что зерна, составляющие частицы, преимущественно ориентированы направлениями [001] вдоль первичного пучка электронов (нормально основной поверхности частиц). Средний размер зерен, вычисленный по числу пятен на кольцах электронограмм (14) с учетом текстурированности частиц, составил 450 Å, что хорошо согласуется с результатами непосредственных измерений.


Большинство электронограмм BN_B содержит гексагональную сетку групп сильных рефлексов hk0, между которыми по кольцу хаотически распределены более слабые рефлексы от зерен меньшего размера и зерен, находящихся в худших отражающих положениях. Группы рефлексов обычно центросимметричны и, таким образом, соответствуют отражениям от соседних зерен (14). Средний угол разориентировки между соседними

аернами в плоскости, нормальной оси текстуры, составляет $1-5^{\circ}$.

Совокупность данных рентгенографического и электронно-оптического анализов позволяет представить следующую модель кристаллического строения BN_B . Частицы BN_B со средним размером 3500 Å состоят из зерен со средним размером 500 Å, преимущественно ориентированных направлениями [001] нормально основной поверхности частиц и развернутых друг относительно друга в этой плоскости на угол $1-5^\circ$. Зерна содержат области когерентного рассеяния со средним размером 150 Å и характеризуются значительной микродеформацией решетки ($\langle \epsilon^2 \rangle^{\frac{1}{2}-} = 3 \cdot 10^{-3}$), связанной с высокой плотностью неоднородно распределенных дислокаций, и дефектами упаковки плоскостей (001). Последние, являясь двумерными зародышами сфалеритоподобной модификации BN, при определенных условиях могут привести к образованию $BN_{c\phi}$, который наблюдался рядом авторов (1 , 2 , 4 , 5), исследовавших продукты прямого превращения BN при высоких давлениях.

Институт проблем материаловедения Академии наук УССР Киев

Поступило 10 VII 1972

Рис. 1. Микрофотографии $(a, \ \delta)$ и электронограммы $(s, \ \epsilon)$ частиц графитоподобного BN $(a, \ \epsilon)$ и вюрцитоподобного BN $(\delta, \ \epsilon)$

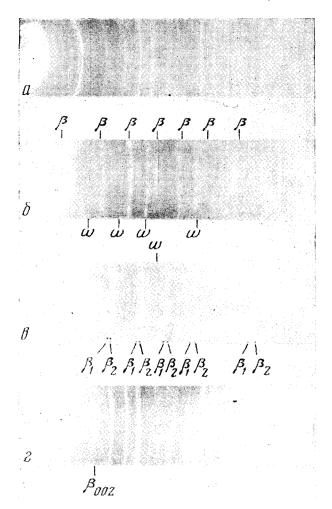


Рис. 4. Рептгенограммы силавов закаленных от 1000° . a-Ti-4% Ni, α ; 6-z-Ti+13.2% Ni; 6-зак. $1000^\circ+\text{нагрев}$ до 400° , $\beta+\omega$; s-зак. $1000^\circ+\text{нагрев}$ до 458° , $\beta_1+\beta_2+\omega$; s-зак. $1000^\circ+\text{нагрев}$ до 470° , $\alpha+\beta$

ПИТИРОВАННАЯ ЛИТЕРАТУРА

¹ F. P. Bundy, R. N. Wentorf, J. Chem. Phys., 38, 1144 (1963). ² Л. Ф. Верещагин, Е. В. Зубова и др., ДАН, 178, 72 (1968). ³ Г. А. Ададуров, З. Г. Алиев и др., ДАН, 172, 1066 (1967). ⁴ N. L. Coleburn, J. C. Forbes, J. Chem. Phys., 48, 555 (1968). ⁵ С. С. Бацанов, Д. Р. Бацанова и др., Журн. структ. химии, 9, 1024 (1968). ⁶ Р. R. Rao, Т. R. Anantharaman, Zs. Metallkunde, 54, 658 (1963). ⁷ Б. Уоррен, в сбори. Успехи физики металлов, 5, 172 (1963). ⁸ R. P. J. Adler, H. M. Otte, C. N. J. Wagner, Metallurg. trans., 1, 2375 (1970). ⁹ О. J. Guentart, J. Chem. Phys., 37, 884 (1962). ¹⁰ С. В. Міtra, N. С. Наlder, Асtа стузт., 17, 817 (1964). ¹¹ П. Б. Хирш, в сборн. Успехи физики металлов, 3, 283 (1960). ¹² М. А. Кривоглаз, Теория рассенния рентгеновских лучей и тепловых нейтронов реальными кристаллами, М., 1967. ¹³ R. Sato, Acta cryst., A25, 309 (1969). ¹⁴ Р. В. Нігsch, А. Kelly, J. М. Меnter, Proc. Phys. Soc., 68, 1132 (1955).