ГЕОХИМИЯ

Г. Б. ЛЕВАШЕВ, И. И. МАЛКОВ

О ФОРМАХ НАХОЖДЕНИЯ ОЛОВА В МУСКОВИТЕ И БИОТИТЕ

(Представлено академиком А. П. Виноградовым 10 П 1972)

Вопрос о формах нахождения и кристаллохимической позиции олова в алюмо- и ферри-магнезиальных слюдах ранее уже обсуждался $\binom{1-4}{2}$. Предполагается, что изоморфное (1) размещение Sn в структуре биотита происходит по схеме: $Mg^{2+}\hat{F}e^{3+} \rightarrow \hat{S}n^{4+}Li$ (1) или $Ti \rightarrow \hat{S}n^{4+}$ (2). Позиция же олова, присутствующего в мусковите нередко в значительных количествах, менее ясна. В. Л. Барсуковым установлено, что после пентрифугирования мусковиты теряют около половины содержащегося в них олова, что указывает на наличие микровключений касситерита (1). Таким образом, ранее проведенными исследованиями выявлены кардинальные различия в формах нахождения Sn в ди- и триоктаэдрических слюдах.

Усовершенствование химических методов определения Sn и SnO₂ (5) позволяет вернуться к обсуждению этих практически важных проблем.

Таблипа 1

		Эк	Эксперимент II **						
	.No.No	Sn, исх. проба	Sn в HCl-вытяжке		Sn после раз-				
	п.п.*		1% HCl	10% HCl	лож. исх. пробы в HF + + H ₂ SO ₄ + HCl	SnO_2			
_	Мусковит								
1	(529-л)	11 00 (3)	$\frac{13(2)}{1,2}$	$\frac{39(2)}{3,5}$	1100 (2)	$\frac{2,4 (1)}{0,2}$			
2	(503-л)	335 (2)	$\frac{3(2)}{0,9}$	$\frac{10(2)}{2,6}$	330 (2)	$\frac{11,7(2)}{3,5}$			
3	(III-9 _M)	1008 (2)	15 (3)	$\frac{31(2)}{3,1}$	995 (2)	$\frac{38,2}{3,5}$			
	Бпотит								
4	(523-л)	375 (6)	$\frac{58(2)}{15,5}$	$\frac{254}{68}$ ***	319 (2)	$\frac{39(2)}{40,4}$			
5	(559-л)	143 (2)				$\frac{2,0(1)}{1,4}$			
6	(656-л)	360 (1)	$\frac{19(2)}{5,3}$	$\frac{235(2)}{70}$	360 (4)	11,0(2)			
7	(54-л)	40 (2)	:			$\frac{0.8(1)}{2}$			
8	(5186)	257 (2)				$\frac{11,6(2)}{4,5}$			
9	(5162)	87 (2)				$\frac{8,3(2)}{9,5}$			

^{* №№ 1, 3 —} пробы из оторочек кварц-касситеритовых жил Иультинского месторождения; № 2 — из клевеландит-кварц-мусковитых жил экзоконтакта Западно-Иультинского интрузива; № 5 — из гранодиорита Восточно-Иультинского интрузива; № 5 — из гранодиорита Восточно-Иультинского интрузива; № 5 — из гранодиорита Восточно-Иультинского интрузива; № № 6, 7 — из гранитов Приморья; № № 8, 9 — из гранитов Центрального Казахстана. В скобках дан номер пробы.

** Над чертой — мг/л, под чертой — %; в скобках приведено число определений.

*** Присутствуют Mn и Fe.

Авторами было проведено две серии экспериментов. Первая (табл. 1, I) должна была ответить на вопросы о том, имеются ли в слюдах легко подвижные комплексы олова и насколько легко экстрагируется оно из

ди- и триоктаэдрических слюд.

Установлено, что при обработке мусковитов (их привязка дана в табл. 1, состав — в табл. 2) 1 и 10% растворами НС1 (температура 80—90°, продолжительность 15 мин.) в первом случае экстрагируется 0,9—1,5%, а во втором 2,6—3,5% элова, находящегося в минерале (335—1100 мг/г). Следовательно, в диоктаэдрических слюдах практически этсутствуют легко выщелачиваемые соединения олова. Более того, незначительное содержание Sn в 10% солянокислой вытяжке подчеркивает прочность его позиции в структуре алюмослюд. Напротив, из биотитов

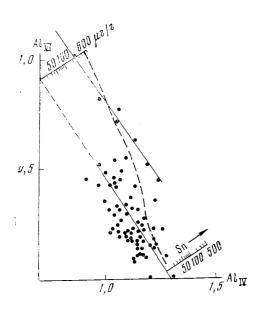


Рис. 1. Характер зависимости между содержанием Sn, Al_{IV} и Al_{VI} в биотитах. Проведена линия усредненных концентраций Sn, отсчитываемых от базиспой прямой, фикспрующей средний состав биотитов в выбранных координатах (Al_{IV} — Al_{VI}). Масштаб — логарифмический. Полный химический анализ биотитов выполнен Е. А. Лаговской и С. П. Славкиной

олово извлекается в значительных количествах, достигающих 15.5% от исходных концентраций в результате обработки проб 1% раствором НСІ и 68-70% - в случае 10% НСІ. При этом раствор обогащается марганцем и железом (проба 523-л), т. е. вынос Sn сопровождается разрушением структуры биотита. Не исключено, что аналогичное явление происходит и при действии более слабого экстрактора, а именно 1% раствора HCl. Следовательно. «вышелачивание» олова 1% раствором HCl нельзя рассматривать как свидетельство наличия легко подвижных соедипений Sn, сорбированных на поверхности зерен биотита.

Задачей второй серии экспериментов (табл. 1, II) было выяснить, какая часть присутствующего в слюдах олова находится в форме касситерита. С этой целью пробы мусковита и биотита подвергались полному разложению в смеси $\mathrm{HF} + \mathrm{H_2SO_4} + \mathrm{HCl}$, пе растворяющей касситерита. В фильтрате определялась концентрация Sn (табл. 1, № 5), осадок же анализировался (фенилфлуороновым ме-

тодом) на SnO₂. Согласно полученным данным, на долю последнего приходится 0,2—3,5% общего количества содержащегося в мусковите олова (табл. 1, № 7). В биотитах эта величина больше и составляет 1,4—10,4%.

Проведенные исследования указывают на преимущественно изоморфное нахождение олова в ди- и триоктаэдрических слюдах. Рост концентрации Sn в биотитах происходит параллельно с увеличением содержания октаэдрического алюминия (Al_{VI}) в них. Это хорошо видно на диаграмме (рис. 1), обобщающей результаты 74 полных химических анализов биотитов (гранитоиды Приморья, Чукотки, Казахстапа, Средней Азии), в которых количественным спектральным методом определено содержание олова (аналитик Э. Д. Голубева). Исходя из этого, можно предположить, что повышение содержания Al_{VI} не только указывает на специфические условия образования оловосодержащих биотитов (алюмобиотитов), но и, по-видимому, является важным фактором при размещении данного элемента в структуре слоистых силикатов.

	Мусковит			Биотит			
Химический состав*							
Окисел	529-л	503-л	52 - я	559-л			
SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ FeO MnO MgO CaO K ₂ O Na ₂ O P ₂ O ₅ H ₂ O ¬ H ₂ O + F	45,42 0,19 30,02 1,80 1,83 0,12 1,75 0,36 10,00 0,50 0,04 0,39 5,93 1,93	47,68 0,06 33,45 1,67 0,33 0,02 0,84 0,00 9,31 0,60 0,02 0,24 5,23 1,14	34,40 2,29 15,80 2,15 28,21 1,68 1,27 0,42 6,68 0,19 0,25 0,79 5,43 0,47	37,47 3,82 13,96 0,91 17,30 0,22 12,62 0,77 8,18 0,32 0,23 0,05 4,15 0,82			
Σ $F=0$	100,28 0,81	$ \begin{array}{c} 100,59 \\ 0,48 \end{array} $	100,34 0,20	$100,68 \\ 0,34$			
Σ	99,47	100,11	100,14	100,34			

Рентгенографическая характеристика**

nkl	I	$d\langle n, \mathring{ m A}$	I	d/n , $ m \mathring{A}$	I	d/n , $ m \mathring{A}$	I	d/n , $ m \mathring{A}$
002 004 110 111 022 113 006 024 060	6 2 6 4 3 6 10 8	9,284 5,099 4,84 4,42 4,04 3,45 3,268 1,499	10 6 10 5	9,98 4,99 3,33 1,504	10 2 10 8	9,92 5,05 3,31 1,542	10 2 10 10	10,20 5,08 3,32 1,543

^{*} Аналитики Е. А. Лаговская, С. П. Славкина, ** Рентгенограммы снимались Р. И. Мартиной, установка УРС-60, D=57.3 мм, Fe K_{α} -излучение 3 часа.

Вхождение олова в структуру триоктаэдрических слюд рассматривалось ранее (6). Указывалось, что образование $\mathrm{Fe^{2+}-Al^{3+}-Sn^{4+}}$ -мотива октаэдра биотитов представляется вероятным и соответствует аналитическим и экспериментальным данным (4).

Вероятно, по такому же принципу (чередования слоев) осуществляется размещение олова и в структуре мусковита, где он может замещать Fe^{3+} или Ti^{4+} (см. табл. 2). Однако в случае мусковита содержание олова, по-видимому, определяется не химическим составом минерала-хозяина, а его концентрацией в исходных магматических или гидротермальных системах (см. табл. 1 и 2, пробы 503-л и 529-л).

Полученные данные могут иметь большое значение при интерпретации поведения Sn в различных геолого-геохимических процессах. Поскольку олово сравнительно легко извлекается из биотитов, можно предположить, что последние являются основными поставщиками его не только для гидротермальных растворов (1), но и для поверхностных вод. Денудация «оловоносных» биотитовых гранитов, их дальпейшая дезинтеграция и раз-

ложение биотита обусловливают переход олова в раствор и транспортировку его в виде химических соединений. В этом случае хемогенная миграция, вероятно, будет основной формой питания оловом седиментационных бассейнов.

При разрушении мусковит-оловосодержащих пород следует ожидать преимущественно механической транспортировки олова, прочно входящего в структуру мусковита. Устойчивость последнего в кислых средах (10% раствор H_2SO_4) доказана экспериментально (7). В результате этого и формировались богатые оловом высокоглиноземистые осадки. Их диагенез, метаморфизм и палингенез, по-видимому, продолжили и завершили геохимический цикл рассматриваемого элемента в земной коре.

Пользуясь случаем, авторы выражают благодарность И. Н. Говорову за ценные советы и замечания, сделанные при просмотре рукописи; Е. А. Лаговской, С. П. Славкиной, Э. Д. Голубевой и Р. И. Мартиной — за

аналитическое обеспечение исследований.

Дальневосточный геологический институт Дальневосточного научного центра Академии наук СССР Поступило 7 V 1971

. Приморское геологическое управление Владивосток

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ В. Л. Барсуков, Геохимия, № 1 (1957). ² Л. В. Таусон, Геохимия редких элементов в гранитоидах, Изд. АН СССР, 1961. ³ Л. В. Дмитриев, В. Л. Барсуков, Н. А. Дурасова, Геохимия, № 3 (1968). ⁴ В. Л. Барсуков, Н. А. Дурасова и др., Геохимия, № 6, 758 (1970). ⁵ В. А. Хализова, А. Я. Алексеева и др., ЖАХ, 25, в. 8 (1970). ⁶ Г. Б. Левашев, А. А. Стрижкова, Э. Д. Голубева, ДАН, 202, № 2 (1972). ⁷ Л. В. Зверев, Н. Н. Смирнова, Т. Б. Филиппова, Минеральное сырье, в. 4 (1962).