УДК 541.133

ФИЗИЧЕСКАЯ ХИМИЯ

А. Д. НЕУЙМИН, В. Б. БАЛАКИРЕВА, С. Ф. ПАЛЬГУЕВ

ЭЛЕКТРОПРОВОДНОСТЬ И ХАРАКТЕР ПРОВОДИМОСТИ ОКИСЛОВ РЕДКОЗЕМЕЛЬНЫХ ЭЛЕМЕНТОВ

(Представлено академиком А. Н. Фрумкиным 31 VIII 1972)

Результаты изучения электропроводности окислов р.з.э. ($^{1-7}$) и природы их проводимости ($^{8-12}$), как правило, плохо согласуются. В целях систематизации электрических свойств этих окислов возникла необходимость исследования их в идентичных условиях.

Исходными материалами для приготовления образцов по керамической метолике служили чистые окислы (см. табл. 1).

Таблетки (d=18, l=3 мм), спрессованные из предварительно прокаленных окислов и спеченные сначала при 1400° в атмосфере воздуха в течение 2 час., затем в вакууме (печь ТВВ-4) при 2000° в течение 1 часа с последующим 5-часовым отжигом в атмосфере воздуха при 1400° , были весьма плотными и практически не имели открытых пор. Электропроводность окислов р.з.э. измерялась двухэлектродным методом (13) на переменном токе частотой 5 кгц. Характер проводимости исследовался методом э.д.с. (14) с использованием электрохимической цепи

Pt, кислород | исследуемый образец | воздух, Pt.

Результаты измерения электропроводности окислов р.з.э. в интервале температур $400-1200^\circ$ представлены в координатах $\lg \sigma - 10^3 / T$ (σ — удельная электропроводность, ом⁻¹ · см⁻¹, T — абсолютная температура) на рис. 1, а величина $E/E_0 \times 100$, характеризующая среднее число переноса попов в окисле, в табл. 2. Как видно из данных табл. 2, исследованные окислы в большинстве являются электронными полупроводниками, и лишь в $\mathrm{Sm_2O_3}$, $\mathrm{Eu_2O_3}$ и $\mathrm{Cd_2O_3}$ при пониженных температурах числа переноса ионов достигают значительных величин.

Из рис. 2 следует, что зависимость электропроводности окислов р.з.э. от парциального давления кислорода $P_{\rm O_2}$ в газовой фазе в координатах $\lg \sigma - \lg P_{\rm O_2}$ для температуры 1000° в интервале $\lg P_{\rm O_2} = -2 \div 0$ прямолинейна, т. е. $\sigma \sim P_{\rm O_2}^{1/n}$, однако величина 1/n не постоянна. Для окислов

Таблипа 1

Окисел	Содержание основного вещества, % (не менее)	Содержание суммы других определяемых окисей р.з.э., % (не более)	Содержание (×10 ²) прочих контро- лируемых при- месей, % (не более)		
Окись неодима Окись самария Окись еврония Окись гадоливия Окись диспрозия Окись гольмия Окись эрбия Окись иттербия Окись лютеция Окись потрия Окись тольмия	99,5 99,9 99,95 99,5 99,9 99,5 99,9 99,93	0,5 (La, Ce, Pr, Sm) 0,1 (Nd, Eu, Gd) 0,05 (Nd, Sm, Gd) 0,1 (Eu, Sm, Tb, Y) 0,5 (Tb, Ho, Er, Y) 0,1 (Dy, Er, Y) 0,5 (Dy, Ho, Tm, Yb) 0,07 (Er, Tm, Lu) 0,1 (Er, Yb, Tm) 5.10-3 (Dy, Tb) 0,1 (La, Y)	1 1 0,5 1 1 1 1 1 1 1 0,5		

неодима, эрбия, гольмия величина 1/n близка к $^{1}/_{6}$, для диспрозия равна $^{1}/_{5,6}$, для иттербия $^{1}/_{8}$, а для окислов самария, европия, гадолиния и лютеция с большой точностью получены значения $1/n = ^{1}/_{4}$. Следовательно, все рассматриваемые окислы обладают электронной составляющей проводимости p-типа, при этом характер пефектов у них различен.

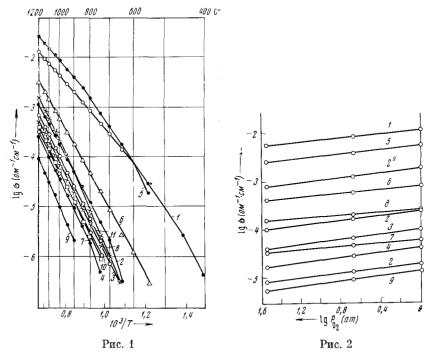


Рис. 1. Температурная зависимость электропроводности окислов р.з.э. $1-\mathrm{Nd_2O_3}$; $2-\mathrm{Sm_2O_3}$; $3-\mathrm{Eu_2O_3}$; $4-\mathrm{Gd_2O_3}$; $5-\mathrm{Dy_2O_3}$; $6-\mathrm{Ho_2O_3}$; $7-\mathrm{Er_2O_3}$; $8-\mathrm{Yb_2O_3}$; $9-\mathrm{Lu_2O_3}$; $10-\mathrm{Sc_2O_3}$; $11-\mathrm{Y_2O_3}$

Рис. 2. Зависимость электронной составляющей электропроводности окислов р.з.э. от парциального давления кислорода в газовой фазе при 1000° . I, 3-9 — те же, что на рис. 1; 2, 2', 2'' — $\mathrm{Sm_2O_3}$ при 800, 1000 и 1200° соответственно

На рис. З зависимость суммарной электропроводности от парциального давления кислорода выражена в координатах $\sigma - P_{\rm O_2}^{1/n}$, где в качестве величины 1/n взято значение, рассчитанное из рис. 2. Построение подобных графиков позволяет определить величину ионной составляющей электропроводности (по отрезку на оси ординат при значении $P_{\rm O_2}^{1/n} = 0$). Из рис. З видно, что величина ионной составляющей электропроводности для всех окислов при 1000° незначительна. Это полностью согласуется с результатами исследования характера проводимости методом э.д.с. (табл. 2).

T аблица $E/E_0 \times 100$ для окислов р.з.э. при различной температуре (°C)

									_			
Окис-	650°	700°	750°	800°	850°	900°	950°	1000°	1050°	1100°	1150°	1200°
$ Nd_2O_3 $ $ Sm_2O_3 $	5,75 18	6,43 9.8	6,17	6,22	5,97	5,38	4,87	4,12	3,91	3,83	3,75	3,00
$\mathrm{Eu_2O_3}\ \mathrm{Gd_2O_3}$		40,4	$\frac{23,4}{32,7}$	13,7 18,4	$^{8,2}_{12,7}$	7,35	3,56	2,40				

Примечание. Для остальных окислов р.з.э. доля ионной проводимости меньше одного процента.

Значение величины $1/n = ^{1}/_{4}$ можно объяснить, если исходить из представления, что в окислах р.з.э. преобладающим типом разупорядочения является полное разупорядочение по Шоттки, катионные вакансии полностью ионизованы и отклонения от стехиометрии достаточно малы (9). По-видимому, этот тип разупорядочения характерен для окислов самария, европия, гадолиния и лютеция. Для этих окислов по сравнению с другими следует ожидать наименьшего отклонения от стехиометрии, к тому же опи обладают и наиболее низким значением электропроводности (рис. 1).

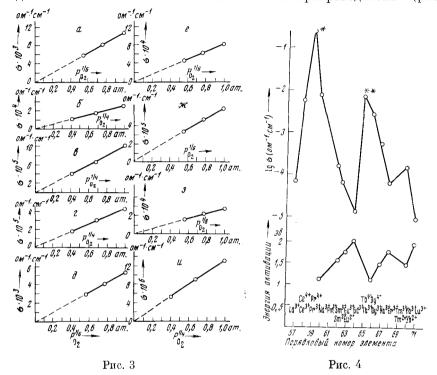


Рис. 3. Зависимость электропроводности окислов р.з.э. от парциального давления кислорода в газовой фазе при 1000° С. $a - \mathrm{Nd_2O_3}, \ \delta - \mathrm{Sm_2O_3}, \ \epsilon - \mathrm{Eu_2O_3}, \ \epsilon - \mathrm{Eu_2O_3}, \ \epsilon - \mathrm{Ho_2O_3}, \ \pi - \mathrm{Er_2O_3}, \ s - \mathrm{Yb_2O_3}, \ u - \mathrm{Lu_2O_3}$

Рис. 4. Зависимость электропроводности окислов р.з.э. от их порядкового номера в периодической системе элементов при 1000° С. Звездочка — значения, взятые из (³), две звездочки — из (⁴)

Для окислов неодима, гольмия, эрбия, диспрозия и иттербия, видимо, характерен иной тип разупорядочения. В частности, значение $1/n = \frac{1}{6}$ может быть получено как результат внедрения ионов кислорода в междоузлия при взаимодействии кристалла с окружающей кислородсодержащей атмосферой:

$$^{1/2}O_{2(\Gamma)} = O_{i}^{"} + 2e^{+},$$

где O_i''' — ион кислорода в междоузлии. Константа равновесия этого процесса $K_{\rm p}=[{\rm O}_i'''][{\rm e}^+]^2/P_{{\rm O}_z}^{1/n}$. Исходя из того, что $[{\rm e}^+]=2[{\rm O}_i''']$, и полагая прямо пропорциональную зависимость электропроводности от концентрации дырок, для электропроводности получим выражение $\sigma \sim P_{{\rm O}_z}^{1/6}$.

Подобно изменению других физических свойств лаптанидов и их соединений (15 , 16), выявлена периодичность в характере изменения электропроводности окислов р.з.э. в зависимости от порядкового номера элемента (рис. 4), имеющая свое объяснение. Если металл имеет несколько степеней окисления, то электрониая проводимость p-типа характерна для окисла, в котором металл находится в более низкой степени окисления. При

этом в общем случае, если условия идентичны, то наибольшую концентрацию электронных дырок, а следовательно, и более высокую электропроводность, будет иметь окисел, металл которого легче переходит в более высокое валентное состояние.

Для лантанидов наиболее характерна валептность 3+. Установлено, что в ряду лантанидов наибольшей устойчивостью обладают электронные конфигурации f^0 , f^7 , f^{14} . Именно с этим связывают особую устойчивость трехвалентного состояния лантана, гадолиния и лютеция (образование конфигураций f^0 , f^7 , f^{14} соответственно). Естественно поэтому было ожидать относительно малую электропроводность окислов этих металлов, что и подтверждается экспериментально. На воздухе в окислах церия и празеодима металлы находятся преимущественно в наивысшей степени окисления, равной 4+ (в соответствии с электронной конфигурацией). Поэтому и электропроводность их по характеру является электронной n-типа, а благодаря относительной неустойчивости этого состояния (легкой потере кислорода окислами) ее величина по сравнению с окисью лантана — существенно большей. При этом из-за меньшей стабильности состояния Ме⁴⁺ в окисле празеодима концентрация Me³⁺ в нем больше, чем в окисле церия. Соответственно электропроводность окисла празеодима выше электропроводности окиси перия.

При переходе к окиси пеодима устойчивость иона Ме⁴⁺ попижается настолько, что существование высших окислов неодима вообще спорно (17). При наших измерениях в атмосфере воздуха образец был представлен окислом Nd₂O₃, т. е. неодим находился преимущественно в трехвалентном состоянии. Одпако тенденция к переходу в состояние Me⁴⁺ у неодима, несомненио, имеется. Благодаря этому окисел неодима уже обладает электронной проводимостью p-типа, а ее величина доводьно значительна. При дальнейшем возрастании порядкового номера элемента от неодима до гадолипия, исходя из этих соображений, следует полагать, что склонность к проявлению степени окисления 4+ или точнее к присоединению нестехиометрического избытка кислорода должна все больше понижаться, что и подтверждается результатами исследования электропроводности.

Известно, что окислы самария, европия и гадолиния вообще не проявляют валентность больше 3+, причем самарий и европий проявляют валентность 2+. Казалось бы, что эти окислы должны быть полупроводниками п-типа, однако факты говорят о том, что они являются полупроводниками р-типа. Аналогичные рассуждения можно привести и для изменения электропроводности окислов в ряду от гадолиния до лютеция.

В изменении энергии активации электропроводности также имеется определенная периодичность (рис. 4). Окислы с большей величиной электропроводности имеют меньшее значение энергии активации. Институт электрохимии

Уральского научного центра Академии наук СССР Свердловск

Поступило 28 VIII 1972

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ А. В. Зырин, В. А. Дубок, С. Г. Тресвятский, В сборн. Химия высокотемпературпых материалов, «Наука», 1967. ² М. Гоёх, С. R., 220, 11, 509 (1945).

³ З. С. Волченкова, Тр. инст. электрохимии УФАН СССР, в. 9, 139 (1966).

⁴ Ү. Wilbert, F. Marion, С. R., 271, 13, 736 (1970). ⁵ Н. П. Богородицкий, В. В. Пасынков, ДАН, 160, № 3, 578 (1965). ⁶ N. М. Tallan, R. W. Vest, J. Am. Ceram. Soc., 49, 8, 401 (1966). ⁷ Л. В. Боровкова, Г. Г. Гордон, Неорганические материалы, 7, 6, 1074 (1971). ⁸ V. В. Таге, Н. Schmalzried, Zs. Phys. chem., 43, 5, 30 (1964). ⁹ В. А. Дубок, Л. И. Тюткало, В сборн. Высокотемпературная химия силикатов и окислов, «Наука», 1972. ¹⁰ Н. Вгешіl, N. Dnerbomez, С. R., 274, 13, 1282 (1972). ¹¹ Л. Rudolph, Zs. Naturforsch., 14a, 8, 727 (1959). ¹² G. M. Schnab, F. Воhla, Zs. Naturforsch., 23a, 10, 1549 (1968). ¹³ С. Ф. Пальгуев, З. С. Волченкова, Тр. инст. химии УФАН СССР, в. 2, 183 (1958). ¹⁴ А. Д. Неуймин, С. Ф. Пальгуев, Тр. инст. электрохимии УФАН СССР, в. 3, 141 (1962). ¹⁵ Г. В. Самсонов, Укр. хим. журн., 36, 3, 227 (1970). ¹⁶ В. В. Серебренпиков, Химия редкоземельных элементов, 1, Томск, 1959. ¹⁷ Ф. Коттон, Дж. Уилкинсон, Современная неорганическая химия, 3, М., 1969. Дж. Уилкинсон, Современная неорганическая химия, 3, М., 1969.