УДК 519.24

MATEMATHKA

А. И. ПОНОМАРЕНКО

ОЦЕНИВАНИЕ СРЕДНЕГО ОДНОРОДНЫХ СЛУЧАЙНЫХ ПОЛЕЙ НА ГРУППАХ

(Представлено академиком В. М. Глушковым 26 VI 1972)

Пусть $\xi(g)$, $g \in G$, — левое однородное в шпроком смысле случайное поле на локально компактной группе G с операцией, записываемой как умножение, т. е. математическое ожидание $M\xi(g)=m$ есть постоянная, а корреляционная функция $B(s^{-1}g)=M[\xi(g)-m][\xi(s)-m]$ зависит только от произведения $s^{-1}g$ (1). Обозначим через H линейное замыкание в среднем квадратичном множества всех случайных величин $\xi(g)$, $g \in G$, являющееся гильбертовым пространством со скалярным произведением $(\eta, \zeta) = M\eta \xi$, $\eta, \zeta \in H$. Всюду в дальнейшем будем предполагать, что поле $\xi(g)$, рассматриваемое как H-значная функция на G, сильно измеримо. Это требование выполняется, например, когда группа G удовлетворяет второй аксиоме счетности, а поле $\xi(g)$ непрерывно в среднем квадратическом.

Если группа G коммутативная, то тогда почти всюду по мере Хаара на G справедливы представления

$$\xi(g) = \int_{\widehat{G}} \chi(g) Z(d\chi), \quad B(g) = \int_{\widehat{G}} \chi(g) F(d\chi),$$

где \hat{G} — группа характеров группы G, а F и Z — соответственно спектральная и случайная спектральная меры поля $\xi(g)$ (1).

В H существует единственный элемент $\mathfrak{M}[\xi(g)]$, называемый средним значением поля $\xi(g)$ и определяемый следующим свойством: для любого $\varepsilon > 0$ существует такой конечный набор элементов $g_1, \ldots, g_n \in G$, что для всех $g \in G$

$$\left\| \underset{g}{\mathfrak{M}} \left[\xi(g) \right] - \frac{1}{n} \sum_{i=1}^{n} \xi(gg_i) \right\| < \varepsilon$$

(2). Пусть также $\mathfrak{M}[B(g)]$ — среднее значение положительно определенной функции B(g), $g \in G$, в смысле Годмана (3). Из результатов (2, 4) следует, что для поля $\xi(g)$ на коммутативной группе G

$$\mathfrak{M}\left[\xi\left(g
ight)
ight]=Z\left(\left\{e
ight\}
ight),\quad \mathfrak{M}\left[B\left(g
ight)
ight]=F\left(\left\{e
ight\}
ight),$$

где e-единица группы $\hat{G}.$

Предположим, что поле $\xi(g)$ наблюдается на множестве Δ , $\Delta \subseteq G$, и по этим наблюдениям требуется оценить неизвестное среднее m поля $\xi(g)$.

Обозначим через K замыкание в H множества всех конечных линей-

ных комбинаций $\sum_{i=1}^n c_i \xi\left(g_i\right),\,g_i \in \Delta, \sum_{i=1}^n c_i = 1.\,$ Элементы K можно использо-

вать в качестве линейных несмещенных оценок m. В K существует элемент m^* с наименьшей нормой $\|m^*\| = \inf_{\eta \in K} \|\eta\|$, являющийся наилучшей не-

смещенной линейной оценкой т.

Так как для любого $\eta \in H$ множество $\{\zeta - \eta \colon \zeta \in K\}$ замкнуто и выпукло в H, то существует единственная случайная величина $\widetilde{\eta} \in K$, называемая наилучшим несмещенным прогнозом η по известному K, такая, что $\|\eta - \widetilde{\eta}\| = \inf_{Y \in K} \|\eta - \zeta\|$.

Следующие теоремы о представлениях m^* обобщают подобные резуль-

таты, полученные в (5) для стационарных случайных процессов.

Теорема 1. Пусть группа C обладает правоэргодической сетью неотрицательных функций $\{\varphi_{\lambda}(g), \lambda \in \Lambda\}, \Lambda$ — некоторое направление (2). Тогда

$$m^* = \underset{\lambda \in \Lambda}{\text{l.i.m.}} \int_{G} \varphi_{\lambda}(g) \widetilde{\xi}(g) v(dg),$$

 $e\partial e \ v - npaвая мера \ Xaapa на \ G \ u интегралы понимаются как интегралы <math>Box$ нера.

Теорема 2. Пусть $H(\Delta)$ — минимальное подпространство пространства H, содержащее все случайные величины $\xi(s)$, $s \in \Delta$, u $\hat{\xi}(g)$ — ортогональная проекция $\xi(g)$ на $H(\Delta)$.

Tогда, если группа G обладает правоэргодической сетью функций $\{ \phi_{\lambda}(g),$

 $\lambda \in \Lambda$ $u \parallel \mathfrak{M}[\xi(g)] \parallel > 0, ro$

$$m^* = \underset{\lambda \in \Lambda}{\text{l.i.m.}} \int_{G} \varphi_{\lambda}(g) \hat{\xi}(g) v(dg).$$

Eсли же $\|\hat{\xi}(g)\| \in L_1(G, \mathbf{v})$ и существует интеграл

$$J = \int_{G} \left[B(g) + |m|^{2} \right] \mu(dg),$$

отличный от нуля, $(\mu - левая мера Хаара на G)$, то

$$m^* = J^{-1} \| m^* \|^2 \int_G \hat{\xi}(g) \mu(dg).$$

Теорема 3. Пусть группа G коммутативная, Δ — компактное подмножество G и v' — сужение меры v на Δ . Пусть также на Δ можно ввести закон композиции, относительно которого v' инвариантна и Δ становится коммутативной компактной группой, изоморфной группе характеров Γ дискретной подгруппы Γ группы \hat{G} .

Tогда, если случайная спектральная мера Z поля $\xi(g), g \in G$, сосредо-

точена на Γ , то

$$m^* = \frac{1}{v(\Delta)} \int_{\Delta} \xi(g) v(dg).$$

Теорема 4. Пусть группа G обладает правоэргодической сетью функций $\{\varphi_{\lambda}(g), \lambda \in \Lambda\}$ и $\hat{m_{\lambda}}$ – оценка среднего m поля $\xi(g), g \in G$, имеющие вид

$$\hat{m}_{\lambda} = \int_{G} \varphi_{\lambda}(g) \, \xi(g) \, v(dg).$$

Тогда сеть дисперсий $\hat{Dm}_{\lambda} = \|\hat{m}_{\lambda} - m\|^2$ этих оценок удовлетворяет соотношению $\lim_{\lambda} \hat{Dm}_{\lambda} = 0$ тогда и только тогда, когда $\mathfrak{M}[B(g)] = 0$.

Киевский государственный университет им. Т. Г. Шевченко

Поступило 19 VI 1972

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ А. М. Яглом, Тр. IV Всесоюзн. матем. съезда, 1, 1963, стр. 250. ² А. А. Темпельман, Литовск. матем. сборн., 2, 1, 195 (1962). ³ R. Godement, Trans. Am. Math. Soc., 63, 1, 1 (1948). ⁴ А. И. Пономаренко, Теория вероятн. и матем. стат., в. 1, 159 (1970). ⁵ U. Grenander, Arkiv Mat., 1, 6, 503 (1952).