УДК 517.946.82

MATEMATHKA

П. К. СЕНАТОРОВ

К ВОПРОСУ ОБ УСТОЙЧИВОСТИ РЕШЕНИЯ ЗАДАЧИ ДИРИХЛЕ ДЛЯ УРАВНЕНИЯ $\operatorname{div}\{k(x)\operatorname{grad} u\}-q(x)u=-f(x)$

(Представлено академиком А. Н. Тихоновым 19 V 1972)

Пусть u(x) — решение задачи

$$\frac{d}{dx}\left\{k\left(x\right)\frac{du}{dx}\right\}-q\left(x\right)u=-f\left(x\right),\quad a< x< b,\quad u\left(a\right)=u\left(b\right)=0,$$

а $u_n(x)$, $n=1, 2, \ldots$,— решение той же задачи со старшим коэффициентом $k_n(x)$, причем k(x), $k_n(x) \ge \alpha > 0$, $q(x) \ge 0$.

В работе (1) показано, что из слабой сходимости последовательности $1/k_n(x)$ к 1/k(x) в классе измеримых и ограниченных функций следует сходимость последовательности решений $u_n(x)$ к u(x) в классе Гёльдера $C^{(0,\mu)}(a,b)$ при любом $\mu \in (0,1)$.

В настоящей заметке мы докажем, что этот результат имеет место только в одномерном случае и не может быть перенесен на аналогичную задачу в области двух или большего числа переменных даже в случае простейшего эллиптического уравнения. А именно, существует такая последовательность коэффициентов $k_n(x)$ и такие f(x) и q(x), что из слабой сходимости последовательности $1/k_n(x)$ к 1/k(x) в ограниченной области пространства нескольких переменных не следует сходимость последовательности решений задачи Дирихле для уравнения $\{k_n(x)\}$ grad $\{k_n(x)\}$ grad $\{k_n(x)\}$ даже в слабом смысле.

Пример. Последовательность решений задач

$$\operatorname{div}\left\{\frac{1}{1+\varepsilon\cos nx}\operatorname{grad}u_n(x,y)\right\} = -\sin y, \quad (x,y) \in \Pi,$$

$$u_n(x,y) = 0, \quad n = \pm \pi, \quad y = 0, \quad y = \pi,$$
(1)

где $0 < \varepsilon < 1$, Π — прямоугольник — $\pi < x < \pi$, $0 < y < \pi$, не является слабо сходящейся к решению «предельной» задачи

$$\Delta u(x, y) = -\sin y, \quad (x, y) \in \Pi,$$

$$u(x, y) = 0, \quad x = \pm \pi, \quad y = 0, \quad y = \pi$$
(2)

(заметим, что последовательность $1/k_n = 1 + \epsilon \cos nx$ сходится слабо к 1/k = 1 в прямоугольнике Π).

Доказательство. Пусть $v_n(x)$ — решение задачи

$$\frac{d}{dx}\left\{\frac{1}{1+\varepsilon\cos nx}\frac{dv_n}{dx}\right\} - \frac{1}{1+\varepsilon\cos nx}v_n = -1, \quad x \in (-\pi, \pi), \quad v_n(\pm \pi) = 0,$$

а $v\left(x\right)$ — соответственно решение «предельной» задачи

$$d^2v / dx^2 - v = -1, \quad x \in (-\pi, \pi), \quad v(\pm \pi) = 0.$$

Для разности $w_n(x) \equiv v_n(x) - v(x)$ выполняется соотношение

$$w_n(x) = \varepsilon^2 \int_{-\pi}^x dz \int_0^z \frac{v(t)\cos^2 nt \, dt}{1 + \varepsilon \cos nt} + \int_{-\pi}^x I_n(z) \, dz,$$

$$I_n(z) = \varepsilon \int_0^z v(t) \cos nt \, dt + \varepsilon \cos nz \left\{ \int_0^z \frac{w_n(t) \, dt}{1 + \varepsilon \cos nt} - z \right\} +$$

$$+ (1 + \varepsilon \cos nz) \int_0^z \frac{w_n(t) \, dt}{1 + \varepsilon \cos nt}.$$
(3)

Предположим, что имеет место слабая сходимость $w_n(x)$ к нулю. Тогда, в силу компактности $w_n(x)$ в $C^{(0,\,\mu)}(-\pi,\,\pi)$, имеет место сильная сходимость $w_n(x)$ к нулю в $C^{(0,\,\mu)}(-\pi,\,\pi)$. Учитывая это, а также слабую сходи-

мость к нулю последовательности $\cos nx$, убеждаемся, что $\int\limits_{-\pi}^{x}I_{n}(z)\,dz=o$ (1).

Так как $v(t) \neq 0$ и сохраняет знак на $(-\pi, \pi)$, то существует такое положительное число δ , зависящее от $x \in (-\pi, \pi)$, что первое слагаемое в правой части (3) превосходит δ по модулю для всех достаточно больших номеров n, что противоречит предположению о стремлении $w_n(x)$ к нулю при $n \to \infty$.

Таким образом, последовательность $w_n(x)$ не сходится слабо к нулю.

Так как $u_n(x, y) = v_n(x) \sin y$ — решение задачи (1), то можно утверждать, что слабая сходимость последовательности $1/k_n(x)$ к 1/k(x) не ведет к сходимости соответствующей последовательности решений $u_n(x, y)$ к u(x, y) паже в слабом смысле.

Замечапие 1. По аналогии с данным примером можно построить примеры для областей типа прямоугольного параллелепипеда в пространстве N переменных ($N \ge 3$), а также для областей, являющихся топологическим произведением произвольной (N-1)-мерной области на отрезок.

Замечание 2. Положив в уравнении (1) $k_n = 1 + \varepsilon \cos nx$, k = 1, $0 < \varepsilon < 1$, получим пример, показывающий, что слабая сходимость последовательности самих старших коэффициентов k_n не является достаточным условием сходимости последовательности решений. (То же самое имеет место и в опномерном случае.)

В заключение автор приносит искреннюю благодарность проф. В. А. Ильину и акад. А. Н. Тихонову за постановку задачи и обсуждение результата. Автор выражает признательность И. А. Шишмареву, чьи критические замечания во многом способствовали выяснению существа рассмотренной проблемы.

Московский государственный университет им. М. В. Ломоносова

Поступило -12 IV 1972

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

1 П. К. Сенаторов, Дифференциальные уравнения, 7, № 4 (1970).