УЛК 536.63+536.5.081.7

ФИЗИКА

## Акалемик АН БССР Н. Н. СИРОТА, Ж. М. КУДЕЛЬКО

## ТЕМПЕРАТУРНАЯ ЗАВИСИМОСТЬ ТЕПЛОЕМКОСТИ СКАНДИЯ В ИНТЕРВАЛЕ 3—300° К

Целью настоящего исследования являлось экспериментальное определение температурной зависимости теплоемкости скандия в интервале температур от 3 до 300° К и нахождение термодинамических функций по полученным значениям теплоемкости.

Скандий запимает, в известном смысле, особое место в периодической системе Д. И. Менделеева. Скандий открывает ряд переходных элементов первого длинного периода периодической системы; он имеет сравнительно высокую температуру плавления, равную  $1535^{\circ}$  С (¹), малую плотность порядка  $3 \text{ г/см}^3$  (²). При нормальных температурах скандий обладает гексагональной структурой типа  $A_3$  (Mg) с периодами идентичности  $a=3,309\pm0,005$  Å и  $c=5,273\pm0,005$  Å (¹) с отпошением c/a=1,593, несколько меньшим, чем для идеальной плотнейшей упаковки.

До настоящего времени температурная зависимость теплоемкости скандия исследована в интервале 1,7—4° К (³); в работе (4) теплоемкость скандия исследовалась сравнительно подробно в интервале 1—23° К (4); измерения проводились на образце, содержащем относительно большую концентрацию примесей, например, содержание кислорода в образце составляло 0,063. В статье (4) приводятся также значения теплоемкости в отдельных точках в интервале от 5 до 293,15° К по неопубликованным данным Веллера и Келли.

Предпринятые нами определения теплоемкости скандия являются, повидимому, первыми экспериментальными измерениями, выполненными на одном и том же образце в пироком температурном интервале от 3 до 300° К. Исследовался образец, изготовленный из отливки дистиллата скандия. Образец имел форму цилиндра  $d=15\,$  мм, высотой 10 мм и весом 36 г. По данным химического анализа скандий имел примеси  $Cu\sim0.03$ , Ca<0.004%.

Измерения теплоемкости проводились в адиабатическом калориметре типа Нернста — Эйкена с двумя адиабатическими оболочками. Измерения проводились ступенями путем подачи импульса тока в нагревательную обмотку и контроля последующего повышения температуры по методике, аналогичной принятой в работе (5).

В области 3—4° К измерения температуры осуществлялись угольным термометром сопротивления фирмы Аллен — Бредли 470 ом. Градуировка термометра производилась по давлению паров гелия. В интервале 10—300° К температура измерялась с помощью медь-константановой термопары, которая градуировалась по стандартному платиновому термометру. По пашим оценкам, погрешности измерений по отношению к измеряемой величине оказались следующими:

Интервал измерений, °К 
$$3-20$$
  $20-100$   $100-300$  Погрешность, %  $10-7$   $5-3$   $4-7$ 

На рис. 1 приведена кривая измерения теплосмкости  $C_p$  от температуры. На кривой в указанных трех участках стрелками отмечены подсчитанные пределы точности измерений. На рисунке приведены также экспериментальные точки, полученные Флотовым и Осборном (4) и взятые из их

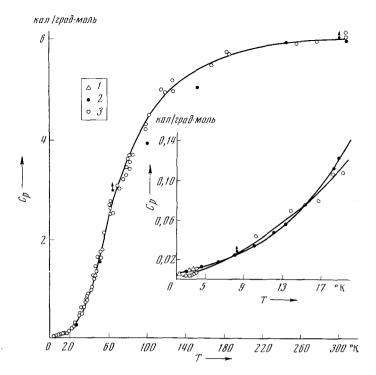



Рис. 1. Температурная зависимость теплоемкости скандия. I — данные (3), 2 — данные (4), 3 — наши данные

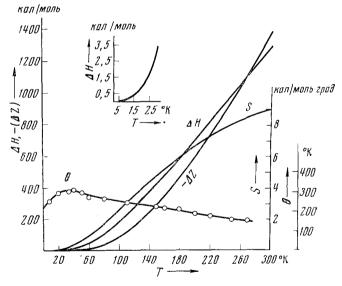



Рис. 2. Температурная зависимость термодинамических величин скандия

статьи точки Веллера и Келли. Для большей яспости участок кривой в области температур  $2-20^\circ\,\mathrm{K}$  приводится в более крупном масштабе.

Поскольку устойчивая при низких температурах модификация скандия обладает гексагопальной структурой, то можно было предполагать, что температурная зависимость теплоемкости будет отличаться до дебаевской кривой ( $^6$ ). На рис. 2 приведена кривая изменения дебаевской характеристической температуры  $\theta(T)$ . Как видно, дебаевская температура при  $3^\circ$  K, равная  $227^\circ$  K, проходит через максимальную величину, равную  $320^\circ$  K при  $35^\circ$  K и затем плавно снижается до  $155^\circ$  K при  $270^\circ$  K.

По усредненным экспериментальным данным, соответствующим проведенной усредненной кривой, были рассчитаны термодинамические функции энтальпии  $\Delta H$ , внутренней энергии  $\Delta U$ , энтропии  $\Delta S$ , свободной энергии  $\Gamma$ иббса и свободной энергии  $\Gamma$ ельмгольца.

Вычисление значений теплоемкости при постоянном объеме произво-

дилось по формуле Нериста — Линдемана

$$C_v = C_p - 0.0214C_p^2 \frac{T}{T_{\text{max}}}$$
.

Полученные значения приводятся в табл. 1.

Таблица 1

| T, °K                                              | $C_{m{p}},$ кал/град $\cdot$ моль                                            | ${\color{blue}C_{v}},$ кан/град $\cdot$ моль                                 | $-(F-U_0)$ , кал/моль                                                             | $\Delta S,$ кал/моль $\cdot$ град                                                               | — (Z — H <sub>0</sub> ),<br>кал/моль                                              |
|----------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| 10<br>20<br>30<br>40<br>50<br>60<br>70<br>80<br>90 | 0,04<br>0,14<br>0,43<br>0,90<br>1,58<br>2,43<br>3,07<br>3,57<br>4,03<br>4,43 | 0,04<br>0,14<br>0,43<br>0,90<br>1,58<br>2,43<br>3,06<br>3,56<br>4,01<br>4,41 | 0,07<br>0,53<br>1,50<br>4,08<br>9,04<br>16,96<br>28,85<br>45,09<br>65,76<br>90,63 | 0,0202<br>0,073<br>0,1696<br>0,3518<br>0,6242<br>0,9888<br>1,4114<br>1,8542<br>2,3012<br>2,7448 | 0,07<br>0,53<br>1,50<br>4,08<br>9,04<br>16,94<br>28,80<br>44,96<br>65,51<br>90,20 |
| 150<br>200<br>250<br>300                           | 5,38<br>5,79<br>5,96<br>6,15                                                 | 5,34<br>5,71<br>5,85<br>6,01                                                 | 275,87<br>615,97<br>977,21<br>1396,20                                             | 4,7380<br>6,6558<br>7,9456<br>9,0160                                                            | $\begin{array}{c} 273,62 \\ 610,36 \\ 966,75 \\ 1379,57 \end{array}$              |

На рис. 2 приведены вычисленные по усредненным экспериментальным данным теплоемкости  $C_p$  значения энтальпии, энтропии и свободной энергии  $\Gamma$ иббса.

Впервые полученные нами температурные зависимости теплоемкости и характеристических функций скандия, несомненно, представляют значительный интерес. Они дают достаточно полную термодинамическую характеристику скандия в области температур от 3 до 300° К. Согласно полученным нами данным, в интервале температур 3—6° К температурная зависимость теплоемкости скандия может быть описана двучленной формулой

$$C_p = 7.5T + 0.18T^3$$
.

Параметр электронной теплоемкости  $\gamma = 7.5 \pm 0.75$  и решетчатой  $\alpha = 0.1875 \pm 0.02$  отличается от данных (3) и несколько ближе к значениям, которые могут быть найдены из данных (4).

Институт физики твердого тела и полупроводников Академии наук БССР Минск Поступило 28 VII 1971

## ЦИТИРОВАННАЯ ЛИТЕРАТУРА

<sup>1</sup> М. Хансен, К. Андерко, Структуры двойных сплавов, 2, М., 1962. <sup>2</sup> Дж. Кей, Т. Лэби, Таблицы физических и химических постоянных, М., 1962. <sup>3</sup> Н. Моntgomery, G. P. Pells, Proc. Phys. Soc., 78, № 502, 4 (1961). <sup>4</sup> Н. Е. Flotov, D. W. Osborne, Phys. Rev., 160, № 3 (1967). <sup>5</sup> П. Г. Стрелков, Е. С. Ицкевич и др., ЖФХ, 28, в. 3 (1954). <sup>6</sup> Н. Н. Сирота, ДАН, 47, № 1, 40 (1945).