УЛК 517.948

МАТЕМАТИКА

А. А. БАБАЕВ, В. В. САЛАЕВ

ОЛНОМЕРНЫЙ СИНГУЛЯРНЫЙ ОПЕРАТОР С НЕПРЕРЫВНОЙ плотностью по замкнутой кривой

(Представлено академиком И. Н. Векиа 19 VI 1972)

Пусть у — замкнутая жорданова спряміляемая кривая: t = t(s) — уравнение кривой у в дуговых координатах; $s(t, \tau)$ — не большая из длин дуг, стягивающих точки t, $\tau = \gamma$;

$$d_0 = \sup_{t,\tau \in \gamma} s(t,\tau), \quad d_1 = \sup_{t,\tau \in \gamma} |t-\tau|;$$

 $s(t, \tau)$ — внутренняя метрика кривой у. Она, вообще говоря, метрически не эквивалентна метрике $t-\tau$ *.

Через $\Phi_{(0,a)}$ обозначим множество неубывающих функций $\phi(\delta)$, определенных на (0, a] таких, что $\varphi(\delta) / \delta$ невозрастающая и $\varphi(\delta) \to 0$ при

Пусть f принадлежит C_{γ} — пространству непрерывных на γ функций. Определим

$$\begin{aligned} & \omega_f^{\mathbf{0}}(\delta) = \sup_{\mathbf{s}(t,\tau) \leq \delta} |f(t) - f(\tau)|, \quad 0 < \delta \leq d_0; \\ & \omega_f(\delta) = \delta \sup_{\xi \geqslant \delta} \frac{1}{\xi} \sup_{|t - \tau| \leq \xi} |f(t) - f(\tau)| = \\ & = \sup_{\mathbf{0} \leq \xi \leq \delta} \sup_{|t - \tau| \geqslant \xi} \left| \frac{f(t) - f(\tau)}{t - \tau} \right|, \quad 0 < \delta \leq d_1. \end{aligned}$$

Очевидно, $\omega_{\ell}(\delta) \in \Phi_{(0,d_1)}$.

 $K_{\scriptscriptstyle (0,\;a_1}$ — множество положительных, неубывающих функций с условием

 $K_{(0, a_1]}$ — множество положе $\phi(\delta) \to 0$ при $\delta \to 0$. S_{τ} — множество элементов $(\mu, \nu) \in K_{(0, d_1]} \times K_{(0, d_0]}$, удовлетворяющих неравенствам $s(t, \tau) \leq \mu(|t-\tau|), |t-\tau| \geq \nu(s(t, \tau))$. Введем функции $\beta(\delta) = \sup_{|t-r| \leqslant \delta} s(t, \tau), \ \delta \in (0, d_1]; \ \alpha(\delta) = \inf_{s(t, \tau) \geqslant \delta} |t-\tau|,$

Справедливы утверждения:

$$(\beta, \alpha) \in S_{\nu}; \ (\mu, \nu) \in S_{\nu} \Rightarrow \beta(\delta) \leqslant \mu(\delta), \quad \alpha(\delta) \geqslant \nu(\delta);$$
$$(\mu, \nu) \in K_{(0, d_1)} \times K_{(0, d_1)}, \ \mu(\delta) \geqslant \beta(\delta), \ \nu(\delta) \leqslant \alpha(\delta) \Rightarrow (\mu, \nu) \in S_{\nu}.$$

 $\beta(\delta)$ непрерывная справа, $\alpha(\delta)$ непрерывна; $\alpha(\delta) = O(\delta)$, $\delta = O(\beta(\delta))$; $\beta(\delta)$ строго возрастающая на $(0, \alpha(d_0)]$, равна d_0 на $[\alpha(d_0), d_1]$; $\beta(\delta) =$ $\sup_{|t-\tau|=\delta} s(t,\tau), \, \dot{\delta} \in (0,\alpha(d_0)].$

Приведем связь между функциями β и α . Пусть $f, g \in K_{(0, a)}, f(x) \leqslant g(x)$, если $f(x) \leqslant g(x)$ на некотором всюду плотном на (0, a] множестве, содержащем $a; f = g \Leftrightarrow f \leqslant g, g \leqslant f$ (см. (5), стр. 317).

$$s(t, \tau) \leq \text{const}[t - \tau]$$

^{*} Т. е., вообще говоря, не выполняется неравенство

Пусть $f \in K_{(0,a)}$. Произвольную функцию \check{f} , принадлежащую $K_{(0,f(a))}$ назовем обобщенной обратной функции f, если $f(x) = \{y \mid f(y) \le x\}$. (Близкие конструкции см. (*), стр. 47; (*), стр. 240—241; (**), стр. 22.)

Понятие обобщенной обратной взаимное.

Пусть $f \in K_{(0,a]}$ $g \in K_{(0,b]}$ и $f: (0,a] \to (0,b], g: (0,b] \to (0,a].$ Пусть $f \subset K_{(0,a]}$ $g \subset K_{(0,b]}$ и f. (0, a] f. (0, b], g. (0, b], g. (0, a]. Для того чтобы f, g были обобщенными обратными, необходимо и достаточно, чтобы $f \cdot g^*(x) \leq x \leq f^*g_*(x)$, $x \in (0,b]$; $g \cdot f^*(x) \leq x \leq g^*f_*(x)$, $x \in (0,a]$; здесь приняты обозначения: если $\phi \in K_{(0,c]}$, то $\phi_*(x) = \phi(x-0)$, $\phi^*(x) = \phi(x+0)$ при $x \in (0,c)$, $\phi^*(c) = \phi(c)$.

Функции $\beta|_{(0,\alpha(d_0))}, \alpha$ обобщенные обратные.

Для любой непрерывной справа функции $\varphi \in K_{(0,a)}$ при условии $\delta =$ $=O(\varphi(\delta))$ существует замкнутая жорданова спрямляемая кривая, имеющая в каждой точке касательную, для которой $\beta(\delta) \sim \phi(\delta)$ ($\beta \sim \phi =$ $\equiv \beta = O(\varphi), \varphi = O(\beta)$.

Рассмотрим особый (сингулярный) интеграл

$$\overline{f}(t) = \int_{\gamma} \frac{f(\xi) - f(t)}{\xi - t} d\xi + \pi i f(t) = \lim_{\varepsilon \to 0} \int_{\gamma \subset \gamma_{\varepsilon}(t)} \frac{f(\xi) - f(t)}{\xi - t} d\xi + \pi i f(t),$$

где $\gamma_{\varepsilon}(t) = \{z \in \gamma \mid s(t,z) \leq \varepsilon\}, 0 < \varepsilon \leq d_0$.

Теорема 1.
$$E c \pi u \int_{0}^{d_{0}} (\omega_{f}(\alpha(\xi))/\alpha(\xi)) d\xi < \infty, mo \ \forall \delta \in (0, d_{1}]$$

$$\omega_{\overline{f}}(\delta) \leqslant C \left(\int_{0}^{\beta(\delta)} \frac{\omega_{f}(\alpha(\xi))}{\alpha(\xi)} d\xi + \delta \int_{\beta(\delta)}^{d_{0}} \frac{\omega_{f}(\alpha(\xi))}{\alpha^{2}(\xi)} d\xi \right),$$

 $r\partial e$ постоянная C зависит лишь от γ , а правая часть, как функция аргумента δ , принадлежит $\Phi_{(0,d,1)}$

Введем оператор

$$Z_b^a(\delta, \mu, \nu, \varphi) = \int_0^{\mu(\delta)} \frac{\varphi(\nu(\xi))}{\nu(\xi)} d\xi + \delta \int_{\mu(\delta)}^b \frac{\varphi(\nu(\xi))}{\nu^2(\xi)} d\xi,$$

где
$$\delta \in (0, a]; \quad \mu \in K_{(0, a]}, \, \mu(a) \leq b; \quad \nu \in K_{(0, b]}, \, \nu(b) \leq a; \quad \phi \in \Phi_{(0, a]};$$

$$\int_{0}^{b} \left(\varphi \left(v \left(\xi \right) \right) / v \left(\xi \right) \right) d\xi < + \infty.$$

 ${
m Teopemy} \ 1$ нетрудно записать в терминах оператора Z:

Eсли (δ, μ, ν, ϕ) принадлежит области определения оператора Z_{b^a} и μ , ν обобщенные обратные, то $Z(\delta) = Z_b{}^a(\delta, \mu, \nu, \phi) \in \Phi_{(0, a]}$. Пусть μ , ν обобщенные обратные и $\mu \leqslant \mu_1, \nu_1 \leqslant \nu$; тогда, если для

 $v_{i*}\mu_{i}^{*}(\delta) \leqslant \delta$ или $v_{i}^{*}\mu_{i*}(\delta) \geqslant \delta$, то $\delta \in (0, a]$ верно $Z_b{}^a(\delta, \mu, \nu, \varphi) \leq Z_b{}^a(\delta, \mu_1, \nu_1, \varphi).$

Отсюда, в частности, следует, что значение оператора $Z_b{}^a(\delta, \mu, \mu, \varphi)$, $Z_{b}{}^{a}(\delta, \dot{v}, v, \phi)$ не зависит от выбора обобщенной обратной функции μ и v.

Для $f \in K_{(0, a)}, \ \lambda > 0$ через $f_{\lambda}(x)$ обозначим произвольную функцию из $K_{(0, a]}$, равную $f(\lambda x)$ при $x \in (0, \min\{a, a / \lambda\}]$.

По определению f = O(g) (f слабо O(g)), если существует $\lambda > 0$, что, по крайней мере, для одной из функций f_{λ} выполнено $f_{\lambda} = O(g)$; $f \stackrel{\text{с. }}{\sim} g$, если f = O(g), g = O(f).

Отношение $\stackrel{\text{сл}}{\sim}$ рефлексивно, симметрично, транзитивно; $f \sim g \Rightarrow$ $\Rightarrow f \sim g$. Если $f \sim g$ и одна из функций f или g принадлежит $\Phi_{(0, a]}$, то $f \sim g$. $f \sim g \Rightarrow f \sim g$, где f, g— произвольные обобщенные обратные соот-

ветственно f и g. Существуют f, $g \in K_{(0, a]}$, что $f \sim g$ и f не эквивалентна g. Для любой функции $f \in K_{(0, a]}$ существует непрерывная функция $g \in K_{(0, a]}$ $\in K_{(0,a)}$ с непрерывной обобщенной обратной g (в этом случае необходимо, чтобы g была строго возрастающая и, следовательно $g=g^{-1}$), что $f \stackrel{\text{en}}{\sim} g, f \stackrel{\text{en}}{\sim} g.$

Оператор Z_{b}^{a} слабо эквивалентные функции переводит в эквивалентные: пусть (δ, μ, μ, ϕ) , (δ, μ, μ, ϕ) принадлежат области определения оператора Z_b^a , тогда $\mu = O(\mu_1) \Rightarrow Z_b^a(\delta, \mu, \mu, \varphi) = O(Z_b^a(\delta, \mu_1, \mu_1, \varphi))$ с постоянной в «o» отношении, не зависящей от ϕ и выбора обобщенных

обратных μ , μ_1 .

Функцию $\mu \in K_{(0, a]}$ назовем допустимой сверху функцией кривой γ , если $a \le d_1$, $\mu(a) \le d_0$ и существуют постоянные c > 0, $\lambda > 0$, что по крайней мере для одной функции μ_{λ} выполняется неравенство $s(t, \tau) \leqslant$ $\leqslant C(\mu_{\lambda})^*(|t- au|)$ при $|t- au|\leqslant a$. Двойственно определяется допустимая снизу функция кривой ү.

Если µ— допустимая сверху функция кривой γ, то µ— допустимая снизу функция кривой ү. Верно и обратное.

Пусть φ , $\psi \in K_{(0, a]}$; $\varphi = O(\psi)$ по определению, если существует $\lambda > 0$, что, по крайней мере, для одной функции ϕ_{λ} найдется постоянная C > 0, что $\varphi_{\lambda}(x) \stackrel{\text{сущ}}{\leqslant} C\psi(x)$.

 $\mu \in K_{(0,a)}, \ a \leqslant d_1$, является допустимой сверху функцией кривой у тогда и только тогда, когда $\beta|_{(0, a]}=O(\mu).$ Теорема 2. Пусть $\mu\in K_{(0, a]}-\partial ony$ стимая сверху функция кривой

 γ и сходится интеграл $\int_{0}^{\infty} (\omega_{f}(\breve{\mu}(\xi)) / \breve{\mu}(\xi)) d\xi;$ тогда

$$\omega_{\overline{f}}(\delta) \leqslant CZ^a_{\mu(a)}(\delta, \mu, \check{\mu}, \omega_{f|_{(0,a]}}),$$

где постоянная C > 0 не зависит от f и выбора μ .

Двойственным образом формулируется теорема 2' в терминах допустимой снизу функции кривой ү.

Теоремы 2 и 2' равносильны и содержат в себе теорему 1.

Если $s(t, \tau) \leq \text{const} |t - \tau|$, то $\omega_t^0(\delta) \sim \omega_t^1(\delta) \sim \omega_t^1(\delta)$ при $0 < \delta \leq d_1$, с постоянными эквивалентности, не зависящими от f, где $\omega_t^{-1}(\delta) =$

С постоянными эквинальная $=\sup_{|t-\tau| \leq \delta} |f(t)-f(\tau)|.$ Следствие из теорем 2, 2' (14, 11, 2). Пусть у такова, что $s(t,\tau) \leq \epsilon$ const $|t-\tau|$; если сходится интеграл $\int_{0}^{t} \frac{\omega_{f}^{0}(\xi)}{\xi} d\xi$, то

$$\omega_{\overline{f}}^{0}(\delta) \leqslant C\left(\int_{0}^{\delta} \frac{\omega_{f}^{0}(\xi)}{\xi} d\xi + \delta \int_{\delta}^{d_{0}} \frac{\omega_{f}^{0}(\xi)}{\xi^{2}} d\xi\right),$$

 $npu \delta \in (0, d_0] u$

$$\|\overline{f}\|_{C_{\Upsilon}} \leq C \left(\int_{0}^{c_0} \frac{\omega_f^0(\xi)}{\xi} d\xi + \|f\|_{C_{\Upsilon}} \right),$$

где постоянная C не зависит от f.

При сравнении теорем 1, 2 удобно утверждение: если $\mu_1(\delta) = o(\mu_2(\delta))$ $\delta \to 0$, to $Z_b{}^a(\delta, \mu_1, \check{\mu_1}, \varphi) = O(Z_b{}^a(\delta, \mu_2, \check{\mu_2}, \varphi)), \delta \to 0$. Здесь же отметим что если $\varphi_1(\delta) = O(\varphi_2(\delta)), \delta \to 0$, то $Z_b{}^a(\delta, \mu, \mu, \varphi_1) = O(Z_b{}^a(\delta, \mu, \mu, \varphi_2))$ $\delta \rightarrow 0$.

Наряду с множеством S_{ν} рассмотрим множество $T_{\nu} = \{(\mu, \nu)\}$ $\in S_{\nu} | \mu(\delta) / \delta, \delta / \nu(\delta)$ не возрастает $\}$.

Введем функции

$$p(\delta) = \sup_{\xi \leqslant \delta} \xi \sup_{|t-\tau| \geqslant \xi} \frac{s(t,\tau)}{|t-\tau|}, \quad 0 < \delta \leqslant d_1;$$

$$q(\delta) = \delta \inf_{s(t,\tau) \geqslant \delta} \frac{|t-\tau|}{s(t,\tau)}, \quad 0 < \delta \leqslant d_0.$$

Справедливы следующие

Утверждения:

$$(p,q) \in T_{\gamma}; \quad (\mu,\nu) \in T_{\gamma} \Rightarrow p(\delta) \leqslant \mu(\delta), \quad \nu(\delta) \leqslant q(\delta);$$

$$(\mu,\nu) \in S_{\gamma} \Rightarrow (\delta \sup_{\xi \geqslant \delta} (\mu(\xi)/\xi), \quad \delta \inf_{\xi \geqslant \delta} (\nu(\xi)/\xi)) \in T_{\gamma};$$

$$p(\delta) = \delta \sup_{\xi \geqslant \delta} (\beta(\xi)/\xi); \quad q(\delta) = \delta \inf_{\xi \geqslant \delta} (\alpha(\xi)/\xi).$$

$$p(\delta) \in C_{(0,d_1)}, \quad q(\delta) \in C_{(0,d_0)}; \quad p(\delta) = d_0 \quad npu \quad \delta \in [\alpha(d_0),d_1];$$

$$p|_{(0,\alpha(d_0))}, q \text{ взаимообратимы}.$$

Пусть $0 < \mu(\delta) \in \Phi_{\scriptscriptstyle (0,\,a]}$, обозначим

$$\Phi H(\mu) = \left\{ \varphi \in \Phi_{(\mathbf{0},a]} | Z^a_{\mu(a)}(\delta,\mu,\check{\mu},\varphi) = O\left(\varphi(\delta) \frac{\mu(\delta)}{\delta}\right) \right\}.$$

По схеме работ (3, 4) можно дать ряд эквивалентных определений множ ства $\Phi H(\mu)$, из которых, в частности, следует, что $\forall \lambda \in (0, 1)$ $\delta / (\mu(\delta))^{\lambda} \subseteq \Phi H(\mu)$.

Для $\phi \in \Phi_{\scriptscriptstyle (0,\;a]},\, a\leqslant d_{\scriptscriptstyle 1},\,$ через $H_{\scriptscriptstyle m{\phi}}$ обозначим множество тех $f\in C_{\scriptscriptstyle \gamma}$, для к торых существует постоянная C>0, что $\omega_f(\delta)\leqslant C\varphi(\delta)$ при $0<\delta\leqslant$ \dot{E}_{σ} ли в \dot{H}_{σ} ввести норму

$$||f||_{\mathcal{H}_{\varphi}} = ||f||_{C_{\Upsilon}} + \sup_{0 < \xi \leq a} \left(\omega_f(\xi) / \varphi(\xi)\right),$$

то H_{φ} превращается в банахово пространство.

не возрастает и $\phi \in \Phi H(\mathfrak{u})$, то оператор $St = \overline{t}$ действует из H_{Φ} в H_{Φ} ψ(δ) = φ(δ) (μ(δ) / δ) и ограничен.

Следствие $(^{13},^{12},^{7},^{6},^{4},^{1})$. Пусть γ такова, что $s(t,\tau) \leq \mathrm{const}|t-\tau|$ $\phi-$ модуль непрерывности, удовлетворяющий условиям

$$\int_{0}^{\delta} \frac{\varphi(\xi)}{\xi} d\xi = O(\varphi(\delta)), \quad \delta \int_{\delta}^{d_{0}} \frac{\varphi(\xi)}{\xi^{2}} d\xi = O(\varphi(\delta)).$$

Тогда оператор $Sf = \overline{f}$ действует в $H_{\varphi}^{0} = \{f \in C_{\eta} | \omega_{f}^{0}(\delta) = O(\varphi(\delta))\}$ ограничен в норме $\|f\|_{H_{\varphi}} = \|f\|_{C_{\gamma}} + \sup_{0 \leqslant \xi \leqslant d_0} (\omega_f^0\left(\xi\right)/\varphi\left(\xi\right)).$

Азербайджанский государственный университет им. С. М. Кирова Баку

Поступи 19 VI 19

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ А. А. Бабаев, Уч. зап. Азерб. гос. унив., сер. физ.-матем. наук, 4, 3—10 (196:
² А. А. Бабаев, Уч. зап. Азерб. гос. унив., сер. физ.-матем. наук, 5, 11 (196:
³ А. А. Бабаев, В. В. Салаев, ДАН, 161, № 2, 267 (1965).
⁴ Н. К. Бари, С. Стечкин, Тр. Московск. матем. общ., 5, 483 (1956).
⁵ С. Б. Бохнер, Лекции интегралах Фурье, М., 1962.
⁶ Т. Г. Гегелия. Сообщ. АН ГрузССР, 13, 10, 5 (1952).
⁷ Н. А. Давыдов, ДАН, 64, № 6, 759 (1949).
⁸ А. Зигмунд, Тригов метрические ряды, 1, 1965.
⁹ Е. Камке, Интеграл Лебега — Стильтьеса, М., 19
¹⁰ М. А. Красносельский, Я. Б. Рутицкий, Выпуклые функции и простраства Орлича, М., 1958.
¹¹ Л. Г. Магнарадзе, Сообщ. АН ГрузССР, 8, 8, 5 (1947).
¹² И. И. Привалов, Граничные свойства однозначных аналитическ функций, М., 1941.
¹³ J. Ргемеli, Мопаtsh. Маth u. phys., 19, 205 (1903).
¹⁴ А. Zygmund, Prace Math.-Fiz., 32, 125 (1924).